Optimization Methods in Finance

INSTRUCTOR:
GERARD CORNUEJOLS
Graduate School of Industrial Administration
Carnegie Mellon University, Pittsburgh, PA 15213 USA

Spring 2003

Objectives of the Course

Optimization Methods in Finance is a project based course in which you learn how to
apply optimization techniques to solve financial problems. The course will cover optimiza-
tion techniques such as linear programming, nonlinear programming, integer programming,
dynamic programming, stochastic programming and robust optimization with examples of
financial applications. There will be two projects, both involving real world data (with minor
simplifications) of problems faced by practitioners. The first project will be a bond portfolio
construction project for a small pension fund. The second project will be a group project
done in teams of three students. Four topics will be proposed in class: a portfolio opti-
mization problem, constructing an index fund, structuring collaterized mortgage obligations,
constructing a synthetic option. For each topic, each team will write a two- to three-page
“proposal”. Based on these proposals, each team will be assigned one topic as second project.
Each team will present the results of their analysis in class.

Instructor

Gérard Cornuéjols, GSTA 232A, phone 268-2284, fax 268-7357
email: gcOv@andrew.cmu.edu
secretary: Barbara Carlson 268-1342, GSTA 232.

Teaching Assistants

Atul Bhandari, GSIA 211, phone 268-6895
email: atvl@andrew.cmu.edu

Luis Zuluaga, GSIA 205, phone 268-2463
email: lzuluaga@andrew.cmu.edu

Miroslav Karamanov, GSIA 203, phone 268-5742
email: miroslav@Qandrew.cmu.edu
Software

The software for this course will be Excel Solver or Premium Solver, Matlab and possibly
other packages as the need arises.

Schedule

| Date | Topic ‘ Project
Week 1 | Linear Programming
Dedicated Bond Portfolio Project 1
Week 2 | Nonlinear Programming
Portfolio Optimization Project 2: Topic 1
Week 3 | Integer Programming Project 1 due
Constructing an Index Fund Project 2: Topic 2
Week 4 | Dynamic Programming
Structuring CMQO’s Project 2: Topic 3
Week 5 | Stochastic Programming
Option Pricing Project 2: Topic 4
Week 6 | Dynamic Portfolio Optimization
Robust Optimization
Week 7 | Student Presentations Project 2 due

Chapter 1

Linear Programming and
Asset /Liability Cash Flow

Matching

1.1 Short Term Financing

Corporations routinely face the problem of financing short term cash commitments. Linear
programming can help in figuring out an optimal combination of financial instruments (hun-
dreds of candidates are typically to be considered, such as bonds with various maturities) to
meet these commitments. To illustrate this, consider the following problem. For simplicity
of exposition, we keep the example very small.

A company has the following short term financing problem ($1000).

Month J F M A M J
Net Cash Flow -150 -100 200 -200 50 300

The company has the following sources of funds
e A line of credit of up to $100 at an interest rate of 1% per month,

e It can issue 90-day commercial paper bearing a total interest of 2% for the 3-month
period,

e Excess funds can be invested at an interest rate of 0.3% per month.

There are many questions that the company might want to answer. What interest pay-
ments will the company need to make between January and June? Is it economical to use the
line of credit in some of the months? If so, when? How much? Linear programming gives us
a mechanism for answering these questions quickly and easily. It also allows to answer some
“what if” questions about changes in the data without having to resolve the problem. What
if Net Cash Flow in January were -200 (instead of -150). What if the limit on the credit line
were increased from 100 to 200. What if the negative Net Cash Flow in January is due to

3

4CHAPTER 1. LINEAR PROGRAMMING AND ASSET/LIABILITY CASH FLOW MATCHING

the purchase of a machine worth 150 and the vendor allows part or all of the payment on this
machine to be made in June at an interest of 3% for the 5-month period. The answers to
these questions are readily available when this problem is formulated and solved as a linear
program.

There are three steps in applying linear programming: modeling, solving, and interpreting.

1.1.1 Modeling

We begin by modeling the above short term financing problem. That is, we write it in the
language of linear programming. There are rules about what you can and cannot do within
linear programming. These rules are in place to make certain that the remaining steps of the
process (solving and interpreting) can be successful.

Key to a linear program are the decision variables, objective, and constraints.

Decision Variables. The decision variables represent (unknown) decisions to be made.
This is in contrast to problem data, which are values that are either given or can be simply
calculated from what is given. For the short term financing problem, there are several possible
choices of decision variables. We will use the following decision variables: the amount x; drawn
from the line of credit in month 4, the amount y; of commercial paper issued in month ¢, the
excess funds z; in month ¢ and the company’s wealth v in June. Note that, alternatively, one
could use the decision variables x; and z; only, since excess funds and company’s wealth can
be deduced from these variables.

Objective. Every linear program has an objective. This objective is to be either mini-
mized or maximized. This objective has to be linear in the decision variables, which means it
must be the sum of constants times decision variables. 3z1 — 10z5 is a linear function. x1x9
is not a linear function. In this case, our objective is simply to maximize v.

Constraints. Every linear program also has constraints limiting feasible decisions. Here
we have three types of constraints: cash inflow = cash outflow for each month, upper bounds
on x; and nonnegativity of the decision variables x;, y; and z;.

For example, in January (i = 1), there is a cash requirement of $150. To meet this
requirement, the company can draw an amount x; from its line of credit and issue an amount
y1 of commercial paper. Considering the possibility of excess funds z; (possibly 0), the cash
flow balance equation is as follows.

r + y1 - 2 = 150

Next, in February (i = 2), there is a cash requirement of $100. In addition, principal plus
interest of 1.01x; is due on the line of credit and 1.003z; is received on the invested excess
funds. To meet the requirement in February, the company can draw an amount xo from its
line of credit and issue an amount ys of commercial paper. So, the cash flow balance equation
for February is as follows.

ro + 1y — 1.0lz;y + 1.003z; — 25 = 100

1.1. SHORT TERM FINANCING 5

Similarly, for March, April, May and June, we get the following equations.

r3 —+ ys — 1.0lxze + 1.00329 — 2z3 = —-200
zy — 1.02y; — 1.0lzg + 1.00323 — z4 = 200
rs — 1.02y» — 1.0lxy + 1.003z4 — 2z = —50

— 1.02ys — 1.0lxzs + 1.003z53 — v = -=300

Note that x; is the balance on the credit line in month ¢, not the incremental borrowing in
month 4. Similarly, z; represents the overall excess funds in month ¢. This choice of vari-
ables is quite convenient when it comes to writing down the upper bound and nonnegativity
constraints.

0 < z; <100
yi = 0
Zi > 0.

Final Model. This gives us the complete model of this problem:

max v

1+ n - 21 = 130
T2 + Y2 — 1.01xzy 4+ 1.003z; — 2z9 = 100
r3 + Y3 — 1.0lzo + 1.00320 — 2z3 = -200
zg — 1.02y; — 1.0lxzs + 1.0032z3 — 2z4 = 200
rs — 1.02yo — 1.0lxy 4+ 1.003z4 — 25 = —50
— 1.02y3 — 1.0lxzs + 1.003z5 — v = -=300

r; < 100

zo < 100

rg < 100

zy < 100

rs < 100

i Yirzi = 0.

Formulating a problem as a linear program means going through the above process to
clearly define the decision variables, objective, and constraints.

1.1.2 Solving the Model with SOLVER

Special computer programs can be used to find solutions to linear programming models.
The most widespread program is undoubtedly SOLVER, included in all recent versions of
the Excel spreadsheet program. SOLVER, while not a state of the art code (which can cost
upwards of $15,000 per copy) is a reasonably robust, easy-to-use tool for linear programming.
SOLVER uses standard spreadsheets together with an interface to define variables, objective,
and constraints.

Here are a brief outline and some hints and shortcuts on how to create a SOLVER
spreadsheet:
e Start with a spreadsheet that has all of the data entered in some reasonably neat way.

In the short term financing example, the spreadsheet might contain the cash flows,
interest rates and credit limit.

6CHAPTER 1. LINEAR PROGRAMMING AND ASSET/LIABILITY CASH FLOW MATCHING

e The model will be created in a separate part of the spreadsheet. Identify one cell with
each decision variable. SOLVER will eventually put the optimal values in these cells.

In the short term financing example, we could associate cells B2 to B6 with variables
x1 to x5 respectively, cells C2 to C4 with the y; variables, cells D2 to D6 with
the z; variables and, finally, E2 with the variable v.

e A separate cell represents the objective. Enter a formula that represents the objective.

For the short term financing example, we might assign cell B8 to the objective func-
tion. Then, in cell B8, we enter the function = E2.

This formula must be a linear formula, so, in general, it must be of the form: cell1*celll’
+ cell2*cell2’ + ..., where celll, cell2 and so on contain constant values and
celll’, cell2’ and so on are the decision variable cells.

e We then have a cell to represent the left hand side of each constraint (again a linear
function) and another cell to represent the right hand side (a constant).

In the short term financing example, cells B10 to B15 might contain the amounts
generated through financing, for each month, and cells D10 to D15 the cash re-
quirements for each month. For example, cell B10 would contain the function = C2
+ B2 -D2 and cell D10 the value 150. Similarly, rows 16 to 20 could be used to
write the credit limit constraints.

Helpful Hint: Excel has a function sumproduct () that is designed for linear programs.

sumproduct(al..al0,bl..b10) is identical to al*bl+a2*b2+a3*b3+. . .+a10%b10. This
function can save much time and aggravation. All that is needed is that the length of

the first range be the same as the length of the second range (so one can be horizontal

and the other vertical).

Helpful Hint: 1t is possible to assign names to cells and ranges (under the Insert-Name
menu). Rather than use al..al0 as the variables, you can name that range var (for
example) and then use var wherever al..al10 would have been used.

e We then select Solver under the Tools menu. This gives a form to fill out to define
the linear program.

e In the ‘“Set Cell’’ box, select the objective cell. Choose Maximize or Minimize.
e In the ¢ ‘By Changing Cells’’, put in the range containing the variable cells.

e We next add the constraints. Press the ¢ €Add...’’ button to add constraints. The
dialog box has three parts for the left hand side, the type of constraint, and the right
hand side. Put the cell references for a constraint in the form, choose the right type,
and press ¢ ‘Add’’. Continue until all constraints are added. On the final constraint,
press < ‘0K’ ’.

Helpful Hint: Tt is possible to include ranges of constraints, as long as they all have the
same type. cl..el <= c3..e3 means cl <= c3,dl <= d3, el <= e3. al..al0d >= 0
means each individual cell must be greater than or equal to 0.

1.1. SHORT TERM FINANCING 7

e Push the options button and toggle the ¢ ‘Assume Linear Model’’ in the resulting
dialog box. This tells Excel to call a linear rather than a nonlinear programming routine
so as to solve the problem more efficiently. This also gives you sensitivity ranges, which
are not, available for nonlinear models.

Note that, if you want your variables to assume nonnegative values only, you need to
specify this in the options box (alternatively, you can add nonegativity constraints in
the previous step, in your constraints).

e Push the Solve button. In the resulting dialog box, select ¢ ‘Answer’’ and ¢ ‘Sensitivity’’.
This will put the answer and sensitivity analysis in two new sheets. Ask Excel to ‘ ‘Keep
Solver values’’, and your worksheet will be updated so that the optimal values are
in the variable cells.

1.1.3 Interpreting the output of SOLVER

The ¢ ‘Answer’’ report looks as follows.

Target Cell (Max)

Original Final
Cell Name Value Value
B8 Objective 0 92.49694915

Adjustable Cells
Original Final

Cell Name Value Value
B2 xl 0 0
B3 2 0 50.98039216
B%$4 x3 0 0
$B%5 x4 0 0
B6 x5 0 0
C'2 yl 0 150
C'3 y2 0 49.01960784
$C%4 y3 0 203.4343636
D2 21 0 0
D3 z2 0 0
$D%4 23 0 351.9441675
D5 z4 0 0
D6 zb 0 0
E2 v 0 92.49694915

S8CHAPTER 1. LINEAR PROGRAMMING AND ASSET/LIABILITY CASH FLOW MATCHING

Constraints
Cell
Cell Name Value Formula Slack

B10 january 150 B10 = DS10 0
B11 february 100 B11 = D11 0
B12 march —200 B12 = D12 0
B13 april 200 B13 = D13 0
B14 may —50 B14 = D14 0
B15 june —-300 B15 = D15 0
$8%16 z1limit 0 B16 <=D16 100
B17 x2limit 50.98039216 B17 <= D17 49.01960784
B18 x3limit 0 B18 <=D18 100
$B%$19 z4dlimit 0 B19 <= DS19 100
B20 x5limit 0 B20 <= D20 100

This report is fairly easy to read: the company’s wealth v in june will be $92,497. This is
reported in Final Value of the Objective (recall that our units are in $1000). To acheive
this, the company will issue $150,000 in commercial paper in january, $49,000 in february and
$203,400 in march. In addition, it will draw $50,980 from its line of credit in february. Excess
cash of $351,944 in march will be invested for just one month. All this is reported in the
Adjustable Cells section of the report. For this particular application, the Constraints
section of the report does not contain anything useful. On the other hand, very useful
information can be found in the sensitivity report. This will be discussed in Section 3.

1.1.4 Modeling Languages

Linear programs can be formulated using modeling languages such as AMPL, GAMS or OPL.
The need for these modeling languages arises because the Excel spreadsheet format becomes
inadequate when the size of the linear program increases. A modeling language lets people
use common notation and familiar concepts to formulate optimization models and examine
solutions. Most importantly, large problems can be formulated in a compact way. Once the
problem has been formulated using a modeling language, it can be solved using any number
of solvers. A user can switch between solvers with a single command and select options that
may improve solver performance. In these notes, I will sometimes present formulations using
a modeling language format since it is easier to follow than an Excel Solver formulation. The
short term financing model would be formulated as follows (all variables are assumed to be
nonnegative unless otherwise specified).

DATA

LET T=6 be the number of months to plan for

L(t) = Liability in month t=1,...,T

ratex = monthly interest rate on line of credit
ratey = 3-month interest rate on commercial paper
ratez = monthly interest rate on excess funds
VARIABLES

1.1. SHORT TERM FINANCING 9

x(t) = Amount drawn from line of credit in month t
y(t) = Amount of commercial paper issued in month t
z(t) = Excess funds in month t

OBJECTIVE (Maximize wealth in June)

Max z(6)

CONSTRAINTS

Month(t=1:T): x(t) - (l+ratex)*x(t-1) + y(t) - (l+ratey)*y(t-3)
-z(t) +(l+ratez)*z(t-1) = L(t)

Month(t=1:T-1): x(t) < 100

Boundary conditions on x: x(0)=x(6) =0

Boundary conditions on y: y(-2)=y(-1)=y(0)=y(4)=y(5)=y(6) =0
Boundary conditions on z: z(0) =0

END

1.1.5 Features of Linear Programs

Hidden in linear programs are a number of assumptions. The usefulness of this model is
directly related to how close reality matches up with these assumptions.

The first two assumptions are due to the linear form of our functions. The contribution
to the objective of any decision variable is proportional to the value of the decision vari-
able. Similarly, the contribution of each variable to the left hand side of each constraint is
proportional to the value of the variable. This is the Proportionality Assumption.

Furthermore, the contribution of a variable to the objective and constraints is independent
of the values of the other variables. This is the Additivity Assumption.

The next assumption is the Divisibility Assumption: is it possible to take any fraction
of any variable? A fractional production quantity may be worisome if we are producing a
small number of battleships or be innocuous if we are producing millions of paperclips. If
the Divisibility Assumption is important and does not hold, then a technique called integer
programming rather than linear programming is required. This technique takes orders of
magnitude more time to find solutions but may be necessary to create realistic solutions.

The final assumption is the Certainty Assumption: linear programming allows for no
uncertainty about the numbers.

It is very rare that a problem will meet all of the assumptions exactly. That does not
negate the usefulness of a model. A model can still give useful managerial insight even if
reality differs slightly from the rigorous requirements of the model.

1.1.6 Dedication

Dedication or cash flow matching is a technique used to fund known liabilities in the future.
The intent is to form a portfolio of assets whose cash inflows will exactly offset the cash
outflows of the liabilities. The liabilities will therefore be paid off, as they come due, without
the need to sell or buy assets in the future. The portfolio is formed today and then held
until all liabilities are paid off. Dedicated portfolios usually only consist of risk-free non-
callable bonds since the portfolio future cash inflows need to be known when the portfolio is
constructed. This eliminates interest rate risk completely. It is used by some municipalities

10CHAPTER 1. LINEAR PROGRAMMING AND ASSET/LIABILITY CASH FLOW MATCHING

and small pension funds. For example, municipalities sometimes want to fund liabilities
stemming from bonds they have issued. These pre-refunded municipal bonds can be taken
off the books of the municipality. This may allow them to evade restrictive covenants in
the bonds that have been pre-refunded and perhaps allow them to issue further debt. It
should be noted however that dedicated portfolios cost typically from 3% to 7% more in
dollar terms than do “immunized” portfolios that are constructed based on matching present
value, duration and convexity of the assets and of the liabilities. Given a stream of cash

flows C; for t = 1,...,T, recall that its present value is P = Zthl (C#t)t, its duration is
C, t(t+1)Cy

1+r

D = % Zthl (]-i—'ftt)t and its convezity is C = % Z;‘FZI Ot In these formulas, we will
assume that r; is the risk-free rate in year ¢. If the portfolio consists only of risk-free bonds,
the present value P* of the portfolio future cash inflows can be computed using the same
risk-free rate ry. Similarly for their duration D* and convexity C*. An “immunized” portfolio
can be constructed based on matching P* = P, D* = D and C* = C. Portfolios that are
constructed by matching these three factors are immunized against parallel shifts in the yield
curve, but there may still be a great deal of exposure and vulnerability to other types of
shifts, and they need to be actively managed, which can be costly. By contrast, dedicated
portfolios do not need to be managed after they are constructed.

When municipalities use cash flow matching, the standard custom is to call a few invest-
ment banks, send them the liability schedule and request bids. The municipality then buys
its securities from the bank that offers the lowest price for a successful cash flow match.

A bank receives the following liability schedule:

Yearl | Year2 | Year3 | Yeard | Yeard | Year6 | Year7? | Year8
12,000 | 18,000 | 20,000 | 20,000 | 16,000 | 15,000 | 12,000 | 10,000

The bonds available for purchase today (Year 0) are given in the next table. All bonds
have a face value of $100. The coupon figure is annual. For example, Bond 5 costs $98 today,
and it pays back $4 in Year 1, $4 in Year 2, $4 in Year 3 and $104 in Year 4. All these bonds
are widely available and can be purchased in any quantities at the stated price.

Bond1 | Bond2 | Bond3 | Bond4 | Bond5 | Bond6 | Bond7 | Bond8 | Bond9 | Bond10
Price | 102 99 101 98 98 104 100 101 102 94
Coupon 5 3.5 5 3.5 4 9 6 8 9 7

Maturity | Yearl | Year2 | Year2 | Year3 | Yeard | Yearb | Yearb | Year6 | Year7? | Year8

Formulate and solve a linear program to find the least cost portfolio of bonds to purchase
today, to meet the obligations of the municipality over the next eight years. To eliminate the
possibility of any reinvestment risk, we assume a 0 % reinvestment rate.

This linear program is available in an Excel spreadsheet called Dedication.xls on the
course web page. Using a modeling language, the formulation might look as follows.

DATA
LET T=8 be the number of years to plan for.
LET N=10 be the number of bonds available for purchase today.

1.1. SHORT TERM FINANCING

11

L(t) = Liability in year t=1,...,T

P(i) = Price of bond i, i=1,...,N

C(i) = Annual coupon for bond i, i=1,...,N
M(i) = Maturity year of bond i, i=1,...,N
VARIABLES

x(1) = Amount of bond i in the portfolio
z(t) = Surplus in year t-1

OBJECTIVE (Minimize cost)

Min z(1) + SUM(i=1:N) P(i)*x(i)

CONSTRAINTS Year (t=1:T):

SUM(i=1:N | M(i) > t-1) C(i)*x(i) + SUM(i=1:N | M(i) = t) 100*x(i)
-z(t+1) + z(t) = L(t)

END

Solving the linear program with SOLVER, we find that we can meet the municipality’s
liabilities for $93,944 with the following portfolio: 62 Bondl, 125 Bond3, 152 Bond4, 157
Bond5, 123 Bond6, 124 Bond8, 104 Bond9 and 93 Bond10.

1.1.7 Project 1

A municipality sends you the following liability stream (in million dollars):

6/15/03 | 12/15/03 | 6/15/04 | 12/15/04 | 6/15/05 | 12/15/05 | 6/15/06 | 12/15/06
6 6 9 9 10 10 10 10
6/15/07 | 12/15/07 | 6/15/08 | 12/15/08 | 6/15/09 | 12/15/09 | 6/15/10 | 12/15/10
8 8 8 8 6 6 5 5

Your job:

Value the liability using the Treasury curve.

Identify between 30 and 50 assets that are suitable for a dedicated portfolio (non-
callable bonds, treasury bills or notes). Explain why they are suitable. You can find
current data on numerous web sites such as bondsonline.com

Set up a linear program to identify a lowest cost dedicated portfolio of assets (so no
short selling) and solve with Excel’s solver (or any other linear programming software
that you prefer). What is the cost of your portfolio? Discuss the composition of your
portfolio. Discuss the assets and the liabilities in light of the Sensitivity Report. What
is the term structure of interest rates implied by the shadow prices? Compare with the
term structure of treasury rates. (Hint: refer to Section 1.3.2.)

Set up a linear program to identify a lowest cost portfolio of assets (no short selling)
that matches present value, duration and convexity (or a related measure) between the
liability stream and the bond portfolio. Solve the linear program with your favorite

12CHAPTER 1. LINEAR PROGRAMMING AND ASSET/LIABILITY CASH FLOW MATCHING

software. Discuss the solution. How much would you save by using this immunization
strategy instead of dedication? Can you immunize the portfolio against nonparallel
shifts of the yield curve? Explain.

e Combine a cash match strategy for the liabilities in the first 3 years and an immunization
strategy based on present value, duration and convexity for the liabilities in the last 5
years. Compare the cost of this portfolio with the cost of the two previous portfolios.

e The municipality would like you to make a second bid: what is your lowest cost ded-
icated portfolio of riskfree bonds if short sales are allowed? Discuss the feasibility of
your solution.

This project should be performed individually. It is due on the day of class in Week 3.
Turn in a short written report (3 or 4 pages plus appendices if needed).

1.2 The Simplex Method (Optional Material)

In this section, you will learn how to solve linear programs. This will give you insights
into what SOLVER and other commercial linear programming software packages actually
do. Such an understanding can be useful in several ways. For example, you will be able to
identify when a problem has alternate optimal solutions (SOLVER never tells you this: it
always give you one optimal solution only). You will also learn about degeneracy in linear
programming and how this could lead to a very large number of iterations when trying to
solve the problem.

1.2.1 Solving Linear Systems of Equations

To solve linear programs, one solves a sequence of linear systems of equations. Let us briefly
review how to solve linear systems of equations.

The Gauss-Jordan elimination procedure is a systematic method for solving systems of
linear equations. It works one variable at a time, eliminating it in all rows but one, and then
moves on to the next variable.

It is generally true that a system of m linear equations in n variables has
either:

(a) no solution,

(b) a unique solution,

(c) infinitely many solutions.

1.2. THE SIMPLEX METHOD (OPTIONAL MATERIAL) 13

The Gauss-Jordan elimination procedure solves the system of linear equa-
tions using two elementary row operations:

e modify some equation by multiplying it by a nonzero scalar (a scalar
is an actual real number, such as 1 or -2; it cannot be one of the

2
variables in the problem),

e modify some equation by adding to it a scalar multiple of another
equation.

The resulting system of m linear equations has the same solution(s) as
the original system. If an equation 0 = 0 is produced, it is discarded
and the procedure is continued. If an equation 0 = a is produced where
a is a nonzero scalar, the procedure is stopped: in this case, the system
has no solution. At each step of the procedure, a new variable is made
basic, that is, it has coefficient 1 in one of the equations and 0 in all
the others. The procedure stops when each equation has a basic variable
associated with it. Say p equations remain (remember that some of the
original m equations may have been discarded). When n = p, the system
has a unique solution. When n > p, then p variables are basic and the
remaining n — p are nonbasic. In this case, the system has infinitely many
solutions.

Example 1.2.1 (Solving linear equations)

r1 + 229 4+ x3 + 3z4 = 4
209 — xy + 3r3 + 2x4 = 3
r1 + To — &3 = 3

In the first step of the procedure, we use the first equation to eliminate x; from the other
two. Specifically, in order to eliminate z; from the second equation, we multiply the first
equation by 2 and subtract the result from the second equation. Similarly, to eliminate x
from the third equation, we subtract the first equation from the third. Such steps are called
elementary row operations. We keep the first equation and the modified second and third
equations. The resulting equations are

r1 + 229 4+ x3 + 3x4 = 4
— bxy + x3 — 4dxy4y = -5
- xy — 2x3 — 314 = -1

Note that only one equation was used to eliminate x; in all the others. This guarantees that
the new system of equations has exactly the same solution(s) as the original one. In the
second step of the procedure, we divide the second equation by -5 to make the coefficient of
x2 equal to 1. Then, we use this equation to eliminate x5 from equations 1 and 3. This yields
the following new system of equations.

T + %xg + Zx4 = 2
ry — Fr3 + g1 = 1

11 1
— ?xg — ?IE4 =0

14CHAPTER 1. LINEAR PROGRAMMING AND ASSET/LIABILITY CASH FLOW MATCHING

Once again, only one equation was used to eliminate x5 in all the others and that guarantees
that the new system has the same solution(s) as the original one. Finally, in the last step of
the procedure, we use equation 3 to eliminate x3 in equations 1 and 2.

i) = 2
T2 + x4 = 1
T3 + T4 = 0

The situation where we can express some of the variables (here z1, x9 and z3) in terms of
the remaining variables (here z4) is important when solving linear programs. These variables
are said to be basic and nonbasic respectively. Any choice of the nonbasic variable x4 yields
a solution of the linear system. Therefore the system has infinitely many solutions. This
is also the case for the original system of equations because, throughout the Gauss-Jordan
procedure, we were careful to keep three equations that have the same solutions as the three
original equations.

Exercise 1 Indicate whether the following linear system of equations has 0, 1 or infinitely
many solutions.

1 + 2z 4+ 4dxz + x4 + 35 = 2
2c1 + o + 23 4+ 3y + xz3 = 1
3r9 + Tx3 — x4 + bxs = 6

Answer: This linear system has no solution.

1.2.2 Solution of Linear Programs by the Simplex Method

For simplicity of exposition, we consider the case where all the constraints are of the form <
and the right-hand-sides are all nonnegative. We will explain the steps of the simplex method
while we progress through an example.

Example 1.2.2 Solve the linear program

max T +x9
221 +x9 < 4
1 +212 <3

120, w220

First, we convert the problem into an equivalent form by adding slack variables x5 > 0
and z4 > 0.

max 1 D)
2x1 +x9 +x3 = 4
Ty +2x9 +zy = 3

120, 12020 23>0, 7420
Let z denote the objective function value. Here, z = x1 + x5 or, equivalently,

z—x1 —x9 =0.

1.2. THE SIMPLEX METHOD (OPTIONAL MATERIAL) 15

Putting this equation together with the constraints, we get the following system of linear
equations.

z —r1 —X9 =0 Row 0
21 +xo +x3 = 4 Row 1 (1.1)
1 +2z9 +x4 = 3 Row 2

Our goal is to maximize z, while satisfying these equations and, in addition, x; > 0,
x9 20, 23 >0, 24 > 0.

Note that the equations are already in the form that we expect at the last step of the
Gauss-Jordan procedure. Namely, the equations are solved in terms of the nonbasic variables
x1, 2. The variables (other than the special variable z) which appear in only one equation
are the basic variables. Here the basic variables are 3 and z4. A basic solution is obtained
from the system of equations by setting the nonbasic variables to zero. Here this yields

r1=20=0 x23=4 x4=3 z=0.

Is this an optimal solution or can we increase z? (Our goal)

By looking at Row 0 above, we see that we can increase z by increasing x; or xo. This is
because these variables have a negative coefficient in Row 0. If all coefficients in Row 0 had
been nonnegative, we could have concluded that the current basic solution is optimum, since
there would be no way to increase z (remember that all variables x; must remain > 0). We
have just discovered the first rule of the simplex method.

Rule 1 If all variables have a nonnegative coefficient in Row 0, the current basic solution
is optimal.
Otherwise, pick a variable x; with a negative coefficient in Row 0.

The variable chosen by Rule 1 is called the entering variable. Here let us choose, say,
x1 as our entering variable. It really does not matter which variable we choose as long as
it has a negative coefficient in Row 0. The idea is to pivot in order to make the nonbasic
variable £1 become a basic variable. In the process, some basic variable will become nonbasic
(the leaving variable). This change of basis is done using the Gauss-Jordan procedure. What
is needed next is to choose the pivot element. It will be found using Rule 2 of the simplex
method. In order to better understand the rationale behing this second rule, let us try both
possible pivots and see why only one is acceptable.

First, try the pivot element in Row 1.

z —x1 —I9 =0 Row 0
2x1 4x9 +z3 = 4 Row 1
1 +2z9 +x4 = 3 Row 2

This yields

16CHAPTER 1. LINEAR PROGRAMMING AND ASSET/LIABILITY CASH FLOW MATCHING

z —%:L'Q —|—%.’L‘3 = 2 Row 0
T +%$2 +5%3 = 2 Row 1
%;132 —%xg) 44 = 1 Row 2

with basic solution 9o =23=0 z1=2 xz4=1 2z=2.

Now, try the pivot element in Row 2.

z —r1 —X9 = 0 Row 0
2x1 +xo +z3 = 4 Row 1
X1 +2x9 +x4 = 3 Row 2

This yields

z +x9 +xy = 3 Row 0
—3xy +x3 —2x4 = -2 Row 1
1 +2x9 +r4 = 3 Row 2

with basic solution 29 =24 =0 z1=3 z3=-2 2z=23.

Which pivot should we choose? The first one, of course, since the second yields an
infeasible basic solution! Indeed, remember that we must keep all variables > 0. With the
second pivot, we get x3 = —2 which is infeasible. How could we have known this ahead

of time, before actually performing the pivots? The answer is, by comparing the ratios
Right Hand Side

Entering Variable Coefficient

Row 2. If you pivot in a row with minimum ratio, you will end up with a feasible basic

solution (i.e. you will not introduce negative entries in the Right Hand Side), whereas if you
pivot in a row with a ratio which is not minimum you will always end up with an infeasible
basic solution. Just simple algebra! A negative pivot element would not be good either, for
the same reason. We have just discovered the second rule of the simplex method.

in Rows 1 and 2 of (1.1). Here we get % in Row 1 and % in

Rule 2 For each Row i, i > 1, where there is a strictly positive “entering vartable co-
efficient”, compute the ratio of the Right Hand Side to the “entering variable coefficient”.
Choose the pivot row as being the one with MINIMUM ratio.

Once you have identified the pivot element by Rule 2, you perform a Gauss-Jordan pivot.
This gives you a new basic solution. Is it an optimal solution? This question is addressed
by Rule 1, so we have closed the loop. The simplex method iterates between Rules 1, 2 and
pivoting until Rule 1 guarantees that the current basic solution is optimal. That’s all there
is to the simplex method.

After our first pivot, we obtained the following system of equations.

z —%1’2 +lx3 = 2 Row 0
T —|—§l’2 +sx3 = 2 Row 1
5Ty —gzr3 +x4 = 1 Row 2

with basic solution 29 =23=0 x1=2 x4=1 2z=2.

Is this solution optimal? No, Rule 1 tells us to choose xo as entering variable. Where
should we pivot? Rule 2 tells us to pivot in Row 2, since the ratios are 1/% = 4 for Row 1,

1.2. THE SIMPLEX METHOD (OPTIONAL MATERIAL)

1 2
and 3/—2 =3
system of equations. This yields
z +izg +izy = é Row 0
T +§IE3 —§w4 = § Row 1
) —§§E3 +§§E4 = 3 Row 2
with basic solution 23 =24 =0 =z = g To = %

Z =

W~

17

3

= 3 for Row 2, and the minimum occurs in Row 2. So we pivot on x5 in the above

Now Rule 1 tells us that this basic solution is optimal, since there are no more negative

entries in Row 0.

All the above computations can be represented very compactly in tableau form.

Basic solution

z x1 w9 w3 x4 | RHS

1 -1 -1 0 0 0 basic r3=4 1x4=23
0 2 1 1 0 4 nonbasic z1 =29 =0

0 1 2 0 1 3 z=0

1 0 —% % 0 2 basic r1=2 1x4=1
0 1 1 1 0 2 nonbasic z9 =x3=0

0 0 % —; 1 1 z2=2

1 0 0 % % % basic T = g Ty = %
0 1 0 3 —g % nonbasic z3=x4 =0

0 0 1 -5 5| 5 Z=3

Graphical Interpretation

Since the above example has only two variables, it is interesting to interpret the steps of the
simplex method graphically. See Figure 1.1. The simplex method starts in the corner point
(x1 = 0,29 = 0) with 2 = 0. Then it discovers that z can increase by increasing, say, xi.
Since we keep zo = 0, this means we move along the x; axis. How far can we go? Only until
we hit a constraint: if we went any further, the solution would become infeasible. That’s
exactly what Rule 2 of the simplex method does: the minimum ratio rule identifies the first
constraint that will be encountered. And when the constraint is reached, its slack x3 becomes
zero. So, after the first pivot, we are at the point (z; = 2,29 = 0). Rule 1 discovers that
z can be increased by increasing xo while keeping x3 = 0. This means that we move along
the boundary of the feasible region 2x; + x9 = 4 until we reach another constraint! After

pivoting, we reach the optimal point (z; = %,wg = % .

Exercise 2 Solve the following linear program by the simplex method.

max 414 +x9 —I3
I +3$3 < 6
3x1 +x9 +3z3 < 9

120, 2220 23>0

18CHAPTER 1. LINEAR PROGRAMMING AND ASSET/LIABILITY CASH FLOW MATCHING

X
2
X
z=0 z=2 1
Figure 1.1: Graphical Interpretation
z 1 X9 x3 S1 So | RHS
1 -4 -1 1 0 0 0
o 1 0 3 1 0 6
Answer: |0 3 1 3 0 1 9 The optimal solution is 1 = 3, 9 = 3 = 0.
1 0 % 5 0 % 12
o 0 5 2 1 = 3
o 1 &+ 1 0 3| 3

1.2.3 Alternate Optimal Solutions, Degeneracy, Unboudedness, Infeasibil-
ity

Alternate Optimal Solutions

Let us solve a small variation of the earlier example, with the same constraints but a
slightly different objective:

max T —|—%l’2
2%1 +x9 < 4
1 H2z2 < 3

x1207 xQZO

As before, we add slacks x3 and z4, and we solve by the simplex method, using tableau
representation.

1.2. THE SIMPLEX METHOD (OPTIONAL MATERIAL) 19

z x1 w9 w3 x4 | RHS Basic solution

1 -1 —% 0 0 0 basic r3=4 1x4=23
0 2 1 1 0 4 nonbasic z1 =29 =0

0 1 2 0 1 3 z=0

1 0 0 % 0 2 basic 1=2 x4=1
0 1 1 % 0 2 nonbasic z9 =23=0

0 0 % -z 1] 1 z=2

Now Rule 1 shows that this is an optimal solution. Interestingly, the coefficient of the
nonbasic variable xo in Row 0 happens to be equal to 0. Going back to the rationale that
allowed us to derive Rule 1, we observe that, if we increase xs (from its current value of 0),
this will not effect the value of z. Increasing xs produces changes in the other variables, of
course, through the equations in Rows 1 and 2. In fact, we can use Rule 2 and pivot to get
a different basic solution with the same objective value z = 2.

z x1 X9 x3 x4 | RHS Basic solution

1 0 0 % 0 2 basic T = % Ty = é
0O 1 0 2 1 5 nonbasic x3=x4 =0

0o 0o 1 -1 2|3 g

Note that the coefficient of the nonbasic variable x4 in Row 0 is equal to 0. Using x4 as
entering variable and pivoting, we would recover the previous solution!

Degeneracy

Example 1.2.3

max 221 D)
3r1 +x9 < 6
Iy —XT2 < 2
) < 3

1 >0, w220

Let us solve this problem using the —by now familiar— simplex method. In the initial
tableau, we can choose x; as the entering variable (Rule 1) and Row 2 as the pivot row (the
minimum ratio in Rule 2 is a tie, and ties are broken arbitrarily). We pivot and this yields
the second tableau below.

z x1 9 x3 x4 x5 | RHS Basic solution

1 -2 -1 0 0 0 0 basic xz3=6 x4=2 x5=3
0 3 1 1 0 O 6 nonbasic x1 =x9 =0

0 1 -1 0 1 0 2 z=0

0 0 1 0 0 1 3

1 0 -3 0 2 0 4 basic =2 x2z3=0 z5=3
0 0 4 1 -3 0 0 nonbasic x9 =x4 =0

0 1 -1 0 1 0 2 z=4

0 0 1 0 0 1 3

20CHAPTER 1. LINEAR PROGRAMMING AND ASSET/LIABILITY CASH FLOW MATCHING

Note that this basic solution has a basic variable (namely x3) which is equal to zero.
When this occurs, we say that the basic solution is degenerate. Should this be of concern?
Let us continue the steps of the simplex method. Rule 1 indicates that xzo is the entering
variable. Now let us apply Rule 2. The ratios to consider are % in Row 1 and % in Row 3.

The minimum ratio occurs in Row 1, so let us perform the corresponding pivot.

z x1 X9 X3 x4 x5 | RHS Basic solution

1 0 O % —% 0 4 basic r1=2 w9=0 x5=3
0O 0 1 1 _3 9 0 nonbasic z3=x4=0

0 1 0 il i 0 2 z=4

0 0 O —% % 1 3

We get exactly the same solution! The only difference is that we have interchanged the
names of a nonbasic variable with that of a degenerate basic variable (z2 and z3). Rule 1 tells
us the solution is not optimal, so let us continue the steps of the simplex method. Variable
x4 is the entering variable and the last row wins the minimum ratio test. After pivoting, we
get the tableau:

z 11 X9 X3 x4 x5 | RHS Basic solution

1 0 0 é 0 :1,—) 5 basic =1 x9=3 x4=4
0O 0 1 0 0 1 3 nonbasic z3=x5 =0

o 1 0 L o -1 1 z=5

0 0 O —g 1 % 4

By Rule 1, this is the optimal solution. So, after all, degeneracy did not prevent the
simplex method to find the optimal solution in this example. It just slowed things down a
little. Unfortunately, on other examples, degeneracy may lead to cycling, i.e. a sequence of
pivots that goes through the same tableaus and repeats itself indefinitely. In theory, cycling
can be avoided by choosing the entering variable with smallest index in Rule 1, among all
those with a negative coefficient in Row 0, and by breaking ties in the minimum ratio test by
choosing the leaving variable with smallest index (this is known as Bland’s rule). This rule,
although it guaranties that cycling will never occur, turns out to be somewhat inefficient.
Actually, in commercial codes, no effort is made to avoid cycling. This may come as a
surprise, since degeneracy is a frequent occurence. But there are two reasons for this:

e Although degeneracy is frequent, cycling is extremely rare.

e The precision of computer arithmetic takes care of cycling by itself: round off errors
accumulate and eventually gets the method out of cycling.

Our example of degeneracy is a 2-variable problem, so you might want to draw the
constraint set in the plane and interpret degeneracy graphically.

1.2. THE SIMPLEX METHOD (OPTIONAL MATERIAL) 21

Unbounded Optimum

Example 1.2.4

max 211 +x9
—X1 +Io S 1
T —21’2 < 2
120, 22020
Solving by the simplex method, we get:
z x1 X9 x3 x4 | RHS Basic solution
1 -2 -1 0 0 0 basic r3=1 wz4=2
0 -1 1 1 0 1 nonbasic z1 =29 =0
0 1 -2 0 1 2 z=0
1 0O -5 0 2 4 basic =2 x3=3
0 0 -1 1 1 3 nonbasic zg =24 =0
0 1 -2 0 1 2 z=4

At this stage, Rule 1 chooses x5 as the entering variable, but there is no ratio to compute,
since there is no positive entry in the column of xo. As we start increasing xo, the value of
z increases (from Row 0) and the values of the basic variables increase as well (from Rows 1
and 2). There is nothing to stop them going off to infinity. So the problem is unbounded.

Interpret the steps of the simplex method graphically for this example.
Infeasible Linear Programs

It is easy to construct constraints that have no solution. The simplex method is able to
identify such cases. We do not discuss it here. The interested reader is referred to a textbook
on linear programming. There are many such books. An excellent one is

V. Chvétal, Linear Programming, Freeman (1983).

Properties of Linear Programs

There are three possible outcomes for a linear program: it is infeasible, it has an un-
bounded optimum or it has an optimal solution.

If there is an optimal solution, there is a basic optimal solution. Remember that the
number of basic variables in a basic solution is equal to the number of constraints of the
problem, say m. So, even if the total number of variables, say n, is greater than m, at most
m of these variables can have a positive value in an optimal basic solution.

Exercise 3 The following tableaus were obtained in the course of solving linear programs
with 2 nonnegative variables x; and x5 and 2 inequality constraints (the objective function
z is maximized). Slack variables s; and so were added. In each case, indicate whether the
linear program

(i) is unbounded

22CHAPTER 1. LINEAR PROGRAMMING AND ASSET/LIABILITY CASH FLOW MATCHING

(ii) has a unique optimum solution
(iii) has an alternate optimum solution

(iv) is degenerate (in this case, indicate whether any of the above holds).

z x1 X9 81 so | RHS
(a) 1 0 3 2 0| 20
0o 1 -2 -1 0 4
0 0 -1 0 1 2
z x1 T2 S1 sSo | RHS
1 0 -1 O 2 20
(b) 0O 0 0 1 -2 5
0o 1 -2 0 3 6
z x1 T9 S1 sSo | RHS
(©) 1 2 0 0 1 8
Y10 3 1 0 —2| 4
0 -2 0 1 1 0
z x1 X9 81 so | RHS
1 0 0 0 5
(d) 0 0 -1 1 1 4
0 1 1 -1 O 4
Answer:

(a) Unique optimum solution.

(b) Unbounded linear program.

(¢) Unique degenerate optimum solution.
(d) Alternate optimum solution.

Exercise 4 Suppose the following tableau was obtained in the course of solving a linear
program with nonnegative variables x1, x2, x3 and two inequalities. The objective function is
maximized and slack variables s; and sy were added.

r1 Ty x3 81 So | RHS
0 a b 0 4| 82
0 -2 2 1 3 c
1 -1 3 0 -5 3

S O N

Give conditions on a, b and ¢ that are required for the following statements to be true:

(i) The current basic solution is a feasible basic solution.

Assume that the condition found in (i) holds in the rest of the exercise.
(ii) The current basic solution is optimal.

(iii) The linear program is unbounded (for this question, assume that b > 0).

1.2. THE SIMPLEX METHOD (OPTIONAL MATERIAL) 23

(iv) The currrent basic solution is optimal and there are alternate optimal solutions (for
this question, assume a > 0).

Answer:

(i) e>0.

(ii) @ > 0 and b > 0.
(iii) @ < 0.

(iv) b=0.

Exercise 5 A plant can manufacture five products Py, P, P3, P, and Ps. The plant consists
of two work areas: the job shop area A; and the assembly area As. The time required to
process one unit of product P; in work area A; is p;; (in hours), for i = 1,2 and j =1,...,5.
The weekly capacity of work area A; is C; (in hours). The company can sell all it produces
of product P; at a profit of s;, for i = 1,...,5.

The plant manager thought of writing a linear program to maximize profits, but never
actually did for the following reason: From past experience, he observed that the plant
operates best when at most two products are manufactured at a time. He believes that if he
uses linear programming, the optimal solution will consist of producing all five products. Do
you agree with him? Explain, based on your knowledge of linear programming.

Answer: The linear program has two constraints (one for each of the work areas). There-
fore, at most two variables are positive in a basic solution. In particular, this is the case for an
optimal solution. So the plant manager is mistaken in his beliefs about linear programming.

1.2.4 Alternative to the Simplex Method

Performing a pivot of the simplex method is extremely fast on today’s computers, even
for problems with thousands of variables and hundreds of constraints. This explains the
success of the simplex method. However, for large problems, the number of iterations can
be enormous. What do we mean by a “large” linear program? We mean a problem with
several thousands variables and constraints, say 5,000 constraints and 100,000 variables or
more. Such models are not uncommon in financial applications and can often be handled by
the simplex method. In recent years, another method has emerged as an alternative. It is
known under the name of barrier method or interior point method. It uses a totally different
strategy to reach the optimum, following a path in the interior of the feasible region. Each
iteration is fairly expensive, but the number of iterations needed does not depend much on
the size of the problem. As a result, barrier methods can be faster than the simplex method
for large scale problems (thousands of constraints). Most state-of-the-art linear programming
packages (Cplex, Xpress, OSL, etc) give you the option to solve your linear programs by either
method.

24CHAPTER 1. LINEAR PROGRAMMING AND ASSET/LIABILITY CASH FLOW MATCHING

1.3 Sensitivity Analysis for Linear Programming

Finding the optimal solution to a linear programming model is important, but it is not the
only information available. There is a tremendous amount of sensitivity information, or
information about what happens when data values are changed.

Recall that in order to formulate a problem as a linear program, we had to invoke a
certainty assumption: we had to know what value the data took on, and we made decisions
based on that data. Often this assumption is somewhat dubious: the data might be unknown,
or guessed at, or otherwise inaccurate. How can we determine the effect on the optimal
decisions if the values change? Clearly some numbers in the data are more important than
others. Can we find the “important” numbers? Can we determine the effect of misestimation?

Linear programming offers extensive capabilities for addressing these questions. We give
examples of how to interpret the SOLVER output. To access the information, simply ask
for the sensitivity report after optimizing. Rather than simply giving rules for reading the
reports, we show how to answer a set of questions from the output.

1.3.1 Short Term Financing

The Solver sensitivity report looks as follows.

Adjustable Cells
Final Reduced Objective Allowable Allowable

Cell Name Value Cost Coefficient Increase Decrease
$B%2 xl 0 —0.0032 0 0.0032 1E+30
B3 2 50.98 0 0 0.0032 0
B4 x3 0 —0.0071 0 0.0071 1E + 30
$B%5 x4 0 —0.0032 0 0.0032 1E+30
B6 b 0 0 0 0 1E+30
C'2 yl 150 0 0 0.0040 0.0032
C3 y2 49.02 0 0 0 0.0032
C4 y3 203.43 0 0 0.0071 0
D2 z1 0 —0.0040 0 0.0040 1E+30
D3 22 0 -0.0071 0 0.0071 1E 4+ 30
$D%4 z3 351.94 0 0 0.0039 0.0032
D5 z4 0 —0.0039 0 0.0039 1E+30
D%6 z5 0 —0.007 0 0.007 1E+30
ES2 v 92.50 0 1 1E+30 1

1.3. SENSITIVITY ANALYSIS FOR LINEAR PROGRAMMING 25

Constraints
Final Shadow Constraint Allowable Allowable
Cell Name Value Price R.H.Side Increase Decrease
B10 january 150 —1.0373 150 89.17 150
B11 february 100 —1.030 100 49.020 50.980
B12 march —200 —1.020 —200 90.683 203.434
B13 april 200 —1.017 200 90.955 204.044
$B%14 may —50 —1.010 —50 50 52
B15 june =300 -1 —300 92497 1E+30
$B%16 xl 00 100 1E+30 100
B17 2 50.98 0 100 1E+30 49.020
$B%18 x3 00 100 1E+30 100
B19 x4 00 100 1E+30 100
$B%$20 b 00 100 1E+30 100

The key columns for sensitivity analysis are the Reduced Cost and Shadow Price columns
in SOLVER. The shadow price u of a constraint C' has the following interpretation:

If the right hand side of the constraint C' increases by an amount A, the
optimal objective value changes by uA.

For a linear program, the shadow price u is an exact figure, as long as the amount of
change A is within the allowable range given in the last two columns of the SOLVER output.
When the change A falls outside this range, the shadow price v cannot be used. When this
occurs, one has to resolve the linear program using the new data.

For example, assume that Net Cash Flow in january were -200 (instead of - 150). By how
much would the company’s wealth decrease at the end of june?

The answer is in the shadow price of the january constraint, « = —1.0373. The RHS of
the january constraint would go from 150 to 200, an increase of A = 50, which is within the
allowable increase (89.17). So the company’s wealth would decrease by 1.0373 * 50,000 = $
51,865.

Now assume that Net Cash Flow in march were 250 (instead of 200). By how much would
the company’s wealth increase at the end of june?

Again, the change A = —50 is within the allowable decrease (203.434), so we can use the
shadow price u = —1.02 to calculate the change in objective value. The increase is (-1.02) *
(-50) = $51,000.

Assume that the credit limit were increased from 100 to 200. By how much would the
company’s wealth increase at the end of june?

The change A = 100 is within the allowable increase (4+o00) and the shadow price is
u = 0. So there is no effect on the company’s wealth in june.

Assume that the negative Net Cash Flow in january is due to the purchase of a machine
worth $150,000. The vendor allows the payment to be made in june at an interest rate of
3% for the 5-month period. Would the company’s wealth increase or decrease by using this
option? What if the interest rate for the 5-month period were 4%?

26CHAPTER 1. LINEAR PROGRAMMING AND ASSET/LIABILITY CASH FLOW MATCHING

The shadow price of the january constraint is -1.0373. This means that reducing cash
requirements in january by $1 increase wealth by $1.0373. In other words, the break even
interest rate for the 5-month period is 3.73%. So, if the vendor charges 3%, we should accept,
but if he charges 4% we should not. Note that the analysis is valid since the amount A = —150
is within the allowable decrease.

Now, let us consider the reduced costs. The basic variables always have a zero reduced
cost. The nonbasic variables (which by definition take the value 0) frequently have a nonzero
reduced cost. The usual convention is that, for a maximization problem, the reduced costs
are nonnegative. SOLVER has the opposite convention, but the magnitude of the numbers
are correct! There are two useful interpretations of the reduced cost ¢, for a nonbasic variable
x.

First, assume that z is set to a positive value A instead of its optimal value 0. Then, the
objective value is decreased by cA. For example, what would be the effect of financing part
of the january cash needs through the line of credit? The answer is in the reduced cost of
variable z1. The effect would be a decrease in the company’s wealth v by $0.0032 per dollar.

The second interpretation of ¢ is that it is the minimum amount by which the objective
coeflicient of = must be increased in order for the variable x to become positive in an optimal
solution. For example, consider the variable z; again. Its value is zero in the current optimal
solution, with objective function v. Hovewer, if we changed the objective to v + 0.0032z1, it
would now be optimal to use the line of credit in january. In other words, in this example,
the reduced cost on z1 can be viewed as the minimum rebate that the bank would have to
offer (payable in june) to make it attractive to use the line of credit in january.

1.3. SENSITIVITY ANALYSIS FOR LINEAR PROGRAMMING

1.3.2 Dedication

27

We end this section with the sensitivity report of the dedication problem formulated in

Section 1.1.6.

Adjustable Cells

Final Reduced Objective Allowable Allowable
Cell Name Value Cost Coefficient Increase Decrease
B5 rl 62.13612744 0 102 3 5.590909091
$B%6 x2 0 0.830612245 99 1E 4+ 30 0.830612245
BST7 3 125.2429338 0 101 0.842650104 3.311081442
B8 x4 151.5050805 0 98 3.37414966 4.712358277
B9 x5 156.8077583 0 98 4.917243419 17.2316607
B10 6 123.0800686 0 104 9.035524153 3.74817022
$B%$11 x7 0 8.786840002 100 1E 4+ 30 8.786840002
B12 8 124.1572748 0 101 3.988878399 8.655456271
B13 29 104.0898568 0 102 9.456887408 0.860545483
B14 210 93.45794393 0 94 0.900020046 1E + 30
SH4 20 0 0.028571429 1 1E 4+ 30 0.028571429
H5 z1 0 0.055782313 0 1E 4+ 30 0.055782313
HS6 22 0 0.03260048 0 1E+30 0.03260048
SHS$T 23 0 0.047281187 0 1E 430 0.047281187
HSS z4 0 0.179369792 0 1E 430 0.179369792
HS9 zb 0 0.036934059 0 1E 4+ 30 0.036934059
HS10 z6 0 0.086760435 0 1E 4+ 30 0.086760435
HS11 27 0 0.008411402 0 1E 4+ 30 0.008411402
Constraints
Final Shadow Constraint Allowable Allowable
Cell Name Value Price R.H.Side Increase Decrease
B19 yearl 12000 0.971428571 12000 1E 4+ 30 6524.293381
B20 year2 18000 0.915646259 18000 137010.161 13150.50805
B21 year3 20000 0.883045779 20000 202579.3095 15680.77583
B22 yeard 20000 0.835764592 20000 184347.1716 16308.00686
B23 year5 16000 0.6563948 16000 89305.96314 13415.72748
B24 year6 15000 0.619460741 15000 108506.7452 13408.98568
B25 year? 12000 0.532700306 12000 105130.9798 11345.79439
B26 year8 10000 0.524288903 10000 144630.1908 10000

Exercise 6

o Interpret the reduced cost of bond i (i=1,...,10)

e [nterpret the reduced cost of each surplus variable z; (t =0,...

o Interpret the shadow price in yeart (t=1,...,8)

77)

28CHAPTER 1. LINEAR PROGRAMMING AND ASSET/LIABILITY CASH FLOW MATCHING

Answers:

The shadow price in year t is the cost of the bond portfolio that can be attributed to a
dollar of liability in year ¢. For example, each dollar of liability in year 3 is responsible for
$ 0.883 in the cost of the bond portfolio. Note that, by setting the shadow price in year ¢
equal to m, we get a term structure of interest rates. Here r3 = 0.0423. How does this
compare with the term structure of treasury rates?

The reduced cost of bond ¢ indicates by how much bond 7 is overpriced for inclusion in
the optimal portfolio. For example, bond 2 would have to be $ 0.83 lower, at $ 98.17, for
inclusion in the optimal portfolio. Note that bond 7 appears to be completely mispriced at
$ 100. A more realistic price would be just above $ 91. By checking the reduced costs, one
may sometimes spot errors in the datal!

The reduced cost of the surplus variable z; indicates what the interest rate on cash rein-
vested in year ¢ would have to be in order to keep excess cash in year t.

1.4 Five Other Linear Programming Models

Linear programming models are found in almost every field of business (and beyond!). The
next sections go through a number of examples in finance, showing how to model them with
the appropriate choice of decision variables, objective, and constraints. In all cases, we will
describe the problem and give a model.

1.4.1 Options Problem

You have $20,000 to invest. Stock XYZ sells at $20 per share today. A European call option
to buy a share of stock XYZ at $15 exactly six months from today sells for $10. You can also
raise additional funds which can be immediately invested, if desired, by selling call options
with the above characteristics. In addition, a 6-month riskless zero-coupon bond with $100
face value sells for $90. You have decided to limit the number of call options that you buy
or sell to at most 5,000.

You consider three scenarios for the price of stock XYZ six months from today: the price
will be the same as today, the price will go up to $40, or drop to $12. Your best estimate
is that each of these scenarios is equaly likely. Formulate and solve a linear program to
determine the portfolio of stocks, bonds, and options that maximize expected profit.

Model

First, we define the decision variables.
B = number of bonds purchased,
S = number of shares of stock XYZ purchased,
C' = number of call options purchased (if > 0) or sold (if < 0).

The expected profits (per unit of investment) are computed as follows.

Bonds: 10
Stock XYZ: 1(204+0—8) =4
Call Option: 1(15—5—10) =0

1.4. FIVE OTHER LINEAR PROGRAMMING MODELS 29

Therefore, we get the following linear programming formulation.

max 10 B + 4 S
90 B + 20 S + 10 C < 20000 (budget constraint)
C < 5000 (limit on number of call options purchased)
C > -5000 (limit on number of call options sold)
B > 0, S > 0 (nonnegativity).

Solving (using SOLVER, say), we get the optimal solution B = 0, S = 3500, C' = -5000
with an expected profit of $14,000.

Note that, with this portfolio, the profit is not positive under all scenarios. In particular,
if the price of stock XYZ goes to $40, a loss of $5000 will be incured. Suppose that the
investor wants a profit of at least $2000 in any of the three scenarios. Write a linear program
that will maximize the investor’s expected profit under this additional constraint.

This can be done by introducing three additional variables.
P; = profit in scenario ¢
The formulation is now the following.

max %Wl +%W2 +%W3

90B +20S +10C < 20000
0B +20S +15C = P
108 —5C = P
0B -85 —10C = P
P > 2000
P > 2000
P > 2000
C < 5000
C > —5000
B>0, S>0.

Solve this linear program with SOLVER to find out the expected profit. How does it
compare with the earlier figure of $14,0007?

Answer: The optimum solution is to buy 2,800 shares of XYZ and sell 3,600 call options.
The resulting expected worth in six months will be $31,200. Therefore, the expected profit
is $11,200 (=$31,200 - 20,000).

Riskless profit is defined as the smallest possible profit that a portfolio will earn, no matter
which of the three scenarios occurs. What is the portfolio that maximizes riskless profit?

To solve this question, we can use a slight modification of the previous model, by intro-
ducing one more variable.

Z = riskless profit.
Here is the formulation.

30CHAPTER 1. LINEAR PROGRAMMING AND ASSET/LIABILITY CASH FLOW MATCHING

max A4
90B 42058 +10C < 20000
10B +205 +15C = P
10B -5C = P
10B -85 -10C = P
P > Z
P, > Z
P > 7
C < 5000
C > —5000
B>0, S>0.

The result is (obtained using SOLVER) a riskless profit of $7272. This is obtained by
buying 2,273 shares of XYZ and selling 2,545 call options. The resulting expected profit is
$9,091 in this case.

1.4.2 Portfolio Optimization
Problem Definition.

The optimality of a portfolio depends heavily on the model used for defining risk and other
aspects of financial instruments. Here is a particularly simple model that is amenable to
linear programming techniques.

Consider a mortgage team with $100,000,000 to finance various investments. There are
five categories of loans, each with an associated return and risk (1-10, 1 best):

Loan/investment Return (%) Risk

First Mortgages 9 3
Second Mortgages 12 6
Personal Loans 15 8
Commercial Loans 8 2
Government Securities 6 1

Any uninvested money goes into a savings account with no risk and 3% return. The goal
for the mortgage team is to allocate the money to the categories so as to:

(a) Maximize the average return per dollar,

(b) Have an average risk of no more than 5 (all averages and fractions taken over the
invested money (not over the saving account)),

(c) Invest at least 20% in commercial loans,

(d) The amount in second mortgages and personal loans combined should be no higher
than the amount in first mortgages.

Model

Let the investments be numbered 1...5, and let x; be the amount invested in investment 3.
Let x5 be the amount in the savings account. The objective is to maximize

1.4. FIVE OTHER LINEAR PROGRAMMING MODELS 31

921 + 1229 + 1523 + 8x4 + 625 + 324

subject to
x1 + xo + a3+ x4 + x5 + x5 = 100, 000, 000.

Now, let’s look at the average risk. Since we want to take the average over only the invested
amount, a direct translation of this constraint is

3x1 4 629 4+ 8x3 + 224 + 75
r1+ 22+ 23+ T4+ X5

<5

This constraint is not linear, but we can cross multiply, and simplify to get the equivalent
linear constraint:

—2x1+ 29+ 323 — 314 — 425 <0

Similarly we need

zy > 0.2(x1 + 22+ 23+ x4 + T5)

or

—0.221 — 0.229 — 0.223 + 0.824 — 0.225 > 0

The final constraint is

To+x3—21 <0
Together with nonnegativity, this gives the entire formulation.

Solving it, we find that we can achieve a return of 11.2% by investing 40% of the assets
in First Mortgages, 40% in Personal Loans and 20% in Commercial Loans.

Discussion

Linear programming models provide great modeling power with a great limit: the handling
of risk must be done in a linear fashion (like our Risk factors here). Other classical models
look at the co-variance of returns between investments, a fundamentally nonlinear effect.
This gives rise to nonlinear models like those that try to minimize variance subject to return
requirements. We will see such nonlinear programming models in Chapter 2.

1.4.3 Who is bankrupt?

Albert, Bill, Charles, David, and Edward have gotten into a bind. After a series of financial
transactions, they have ended up each owing some of the others huge amounts of money. In
fact, near as the lawyers can make out, the debts are as follows

32CHAPTER 1. LINEAR PROGRAMMING AND ASSET/LIABILITY CASH FLOW MATCHING

Debtor Creditor Amount
($millions)

10
3

DEHOOQQW s =
oo OQH-"
g B R Oy Ot

3

The question is, who is bankrupt? We will say that a person i is bankrupt if there is no
possible transfer of funds among the people such that ¢ completely pays off his obligations.
For instance, Albert is bankrupt since he owes 13, and is only owed 9. Edward is bankrupt
as well since he owes 10 and, although he is owed 10, this debt is owed to him by Albert
who can pay at most 9. Formulate the problem of determining whether Bill is bankrupt, as a
linear program. Then modify your formulation to determine if each of the others is bankrupt.
This example may look contrived, but it is inspired by a solution to the debts resulting from
a crash of Kuwait’s al-Mankh stock market.

Answer:
Here is a model to decide whether Bill is bankrupt.
VARIABLES
AE = Transfer from Albert to Edward
AC = Transfer from Albert to Charles
BA = Transfer from Bill to Albert
CB = Transfer from Charles to Bill
CD = Transfer from Charles to David
DA = Transfer from David to Albert
EC = Transfer from Edward to Charles
ED = Transfer from Edward to David
OBJECTIVE (minimize the debt of Bill)
Min BA
CONSTRAINTS
AlbertTransfers: BA + DA - AC - AE = 0
BillTransfers: BA - CB =0
CharlesTransfers: AC + EC - CB - CD =0
DavidTransfers: CD + ED - DA =0
EdwardTransfers: AE - EC - ED = 0

BOUNDS
BA <5
AC < 3
AE < 10
CB <6
CDh < 4
DA < 4

1.4. FIVE OTHER LINEAR PROGRAMMING MODELS 33

EC <7
ED < 3
END

Solving this linear program. we find that the objective value equals 5. This means that
Bill is not bankrupt since he can cover his total obligations ($ 5 millions owed to Albert).
Using the same formulation for Charles, replacing the objective by Min CB + CD , we find
that the maximum objective value is 9. Since Charles owes 10 altogether, he is bankrupt.
Solving similar linear programs for the other three players, we find that Albert, Charles and
Edward are bankrupt while Bill and David are not.

1.4.4 Arbitrage in the Currency Market

Consider the world’s currency market. Given two currencies, say the Yen and the USDollar,
there is an exchange rate between them (currently about 133 Yens to the Dollar). It is
axiomatic of a arbitrage-free market that there is no method of converting, say, a Dollar to
Yens then to Euros, then Pounds, and to Dollars so that you end up with more than a dollar.
How would you recognize when there is an arbitrage possibility?

These are actual trades made on February 14, 2002.

Dollar | Euro | Pound | Yen

Dollar 8706 | 1.4279 | .00750
Euro | 1.1486 1.6401 | .00861
Pound | .7003 | .6097 .00525

Yen | 133.38 | 116.12 | 190.45

It is not obvious, but the Dollar-Pound-Yen-Dollar conversion actually makes $0.0003 per
dollar converted. How would you formulate a linear program to recognize this?

Answer:

VARIABLES
DE = quantity of dollars changed into euros
DP = quantity of dollars changed into pounds
DY = quantity of dollars changed into yens
ED = quantity of euros changed into dollars
EP = quantity of euros changed into pounds
EY = quantity of euros changed into yens
PD = quantity of pounds changed into dollars
PE = quantity of pounds changed into euros
PY = quantity of pounds changed into yens
YD = quantity of yens changed into dollars
YE = quantity of yens changed into euros
YP = quantity of yens changed into pounds
D = quantity of dollars generated through arbitrage
OBJECTIVE
Max D

34CHAPTER 1. LINEAR PROGRAMMING AND ASSET/LIABILITY CASH FLOW MATCHING

CONSTRAINTS
Dollar: D + DE + DP + DY - 0.8706*%ED - 1.4279%PD - 0.00750%YD = 1
Euro: ED + EP + EY - 1.1486*DE - 1.6401%PE - .00861*YE = 0
Pound: PD + PE + PY - 0.7003%DP - 0.6097*EP - 0.00525%YP = 0
Yen: YD + YE + YP - 133.38%DY - 116.12%EY - 190.45%PY = 0O
BOUNDS
D < 10000
END
Solving this linear program, we find that, in order to gain $10,000 in arbitrage, we have
to change about $15.6 million dollars into pounds, then convert these pounds into yens and
finally change the yens into dollars. There are other solutions as well.

1.4.5 Tax Clientele Effects in Bond Portfolio Management

Here, we consider a model proposed by E.I. Ronn, “A New Linear Programming approach
to Bond Portfolio Management,” Journal of Financial and Quantitative Analysis 22 (1987)
439-466. See also S.M. Schaefer, “Tax Induced Clientele Effects in the Market for British
Government Securities,” Journal of Financial Economics 10 (1982), 121-159.

The goal is to construct an optimal tax-specific bond portfolio, for a given tax bracket,
by exploiting the price differential of an after-tax stream of cash flows. This objective is ac-
complished by purchasing at the ask price “underpriced” bonds (for the specific tax bracket),
while simultaneously selling at the bid price “overpriced” bonds. In addition, the model can
also be used to measure the after-tax term structure of spot U.S. Government interest rates
for both tax-exempt and taxable investors.

The following notation is assumed:

P = asked price of bond j

P}’ = bid price of bond j

X§ = amount bought of bond j

X]l-’ = amount of bond j sold short, and

J=A{1,...,7,..., N} = set of riskless bonds.
The objective function of the program is
N N
Z=max Y P'X}-Y P!X{ (1.2)
j=1 j=1

since the long side of an arbitrage position must be established at ask prices while the short
side of the position must be established at bid prices. Now consider the future cash-flows of
the portfolio.

N N
C) = Za}X; - Za}XJb (1.3)
j=1 j=1

1.4. FIVE OTHER LINEAR PROGRAMMING MODELS 35

N N
Fort=2,...,T, Cy=(1+p)Cio1+ Y aXy—> atX?, (1.4)
j=1 j=1
where p = Exogenous riskless reinvestment rate
a§~ = coupon and/or principal payment on bond j at time .

For the portfolio to be riskless, we require
c,>0 t=1,...,T. (1.5)

Since the bid-ask spread has been explicitly modeled, it is clear that X7 > 0 and XJI? >0
are required. Now the resulting linear program admits two possible solutions. Either all
bonds are priced to within the bid-ask spread, i.e. Z = 0, or infinite arbitrage profits may be
attained, i.e. Z = co. Clearly any attempt to exploit price differentials by taking extremely
large positions in these bonds would cause price movements: the bonds being bought would
appreciate in price; the bonds being sold short would decline in value. Thus, in order to
provide a finite solution, the constraints Xj <1and XJZ? < 1 are imposed. Thus, with

0< X!, X)<1 j=1,...,N, (1.6)
the complete problem is now specified as (1.2)-(1.6).

Taxes

The proposed model explicitly accounts for the taxation of income and capital gains for
specific investor classes. This means that the cash flows need to be adjusted for the presence
of taxes.

For a discount bond (i.e. when P{ < 100), the after-tax cash-flow of bond j in period ¢
is given by

a§~ = c§~(1 - 7),

where c§

and 7 is the ordinary income tax rate.

is the semiannual coupon payment

At maturity, the j** bond yields
at = (100 = PA)(1 = g) + P,

where ¢ is the capital gains tax rate.
For premium bond (i.e. when P> 100), the premium is amortized against ordinary
income over the life of the bond, giving rise to an after-tax coupon payment of

P$ — 100 P$ — 100
a?:[cé——y](1—T)+—J
nj nj

where n; is the number of coupon payments remaining to maturity.

36CHAPTER 1. LINEAR PROGRAMMING AND ASSET/LIABILITY CASH FLOW MATCHING

A premium bond also makes a nontaxable repayment of
ab =100
at maturity.

Data

The model requires that the data contain bonds with perfectly forcastable cash flows. All
callable bonds are excluded from the sample. For the same reason, flower bonds of all types
are excluded. Thus, all noncallable bonds and notes are deemed appropriate for inclusion in
the sample.

Major categories of taxable investors are Domestic Banks, Insurance Companies, Individ-
uals, Nonfinancial Corporations, Foreigners. In each case, one needs to distinguish the tax
rates on capital gains versus ordinary income.

The fundamental question to arise from this study is: does the data reflect tax clientele
effects or arbitrage opportunities?

Consider first the class of tax-exempt investors. Using current data, form the optimal
“purchased” and “sold” bond portfolios. Do you observe the same tax clientele effect as
documented by Schaefer for British government securities; namely, the “purchased” portfolio
contains high coupon bonds and the “sold” portfolio is dominated by low coupon bonds.
In other words, the preferential taxation of capital gains for (most) taxable investors causes
them to gravitate towards low coupon bonds. Consequently, for tax-exempt investors, low
coupon bonds are “overpriced” and not desirable as investment vehicles.

Repeat the same analysis with the different types of taxable investors. Do you observe:

1. a clientele effect in the pricing of US Government investments, with tax- exempt in-
vestors, or those without preferential treatment of capital gains, gravitating towards
high coupon bonds?

2. that not all high coupon bonds are desirable to investors without preferential treatment
of capital gains? Nor are all low coupon bonds attractive to those with preferential
treatment of capital gains. Can you find reasons why this may be the case?

The dual price, say u;, associated with constraint (1.4) represents the present value of an
additional dollar at time ¢. Explain why. It follows that u; may be used to compute the term
structure of spot interest rates Ry, given by the relation

1
R, = (i)t ~ 1.
Ut

Compute this week’s term structure of spot interest rates for tax-exempt investors.

Chapter 2

Nonlinear Programming and
Portfolio Optimization

2.1 Introduction

The term nonlinear programming usually refers to problems such as

mazimize f(x1,...,2Tn)
subject to
gi(x1,...,2p) <0 fori=1,...,m
where f and g; are functions of the n real variables z1,...,z,. Linear programming is the

special case when these functions are linear. There are many problems, however, where the
functions involved are not all linear. In fact, it is probably true that the real-world problems
that fit strictly the mold of linearity are the exception rather than the rule. Here are some
illustrations:

1. Probabilistic elements: Nonlinearities frequently arise when some of the coefficients
in the model are random variables. For example, consider a linear program where the
right—hand sides are random. To illustrate, suppose the LP has two constraints:

maximize Cc1T]+ ...+ Ty
a1ry] + ... +apr, < b
a1 + ...+ aopxy < by
where the coefficients b; and by are independently distributed and G;(y) represents the
probability that the random variable b; is at least as large as y. Suppose you want to
select the variable x1,...,x, so that the joint probability of both the constraints being
satisfied is at least 0:

P[anl’l + ...+ apz, < bl] X P[agll’l + ...+ aomry, < bg] > 0.

Then this condition can be written as the following set of constraints:

—y1 anxy+...+apmr, = 0
-y ao1T1 + ...+ agmry, = 0
Gi(y1) x Ga(y2) > B,

37

38

2

CHAPTER 2. NONLINEAR PROGRAMMING AND PORTFOLIO OPTIMIZATION

where this product leads to nonlinear restrictions on y; and ys.

. Portfolio selection: Financial analysts in banks and insurance companies have de-
voted considerable attention to mathematical models that assist in managing portfolios
of common stocks, bonds and other securities. Inherent in such models is an assess-
ment of a proposed porfolio’s expected gain and the associated risk. Variance and
covariance terms in the risk function typically lead to quadratic terms. We discuss
portfolio optimization in Sections 2.10 and 2.11 of this chapter.

. Constructing an index fund: In integer programming applications, such as a model
discussed in the next chapter for constructing an index fund, the “relaxation” can be
written as a multivariate function that is convex but nondifferentiable. Subgradient
techniques are used to solve this class of nonlinear optimization problems.

To solve nonlinear programming problems by hand, the usual approach is to write the op-
timality conditions and then to solve the resulting system. Even in the case of unconstrained

opti

mization, it must be obvious to you that this approach is not practical for more than

three or four variables. The reasons are:

1

. Setting the first partial derivatives equal to zero gives a system of n equations in n
unknowns. Unless this system is linear (i.e. the original function was quadratic) it is
not easy to find solutions. It may well be impossible to do by hand.

. The second order sufficiency conditions are quite complicated, requiring the evaluation
of determinants in the Hessian matrix. Even in the case of one or two decision variables,
if the function f is sufficiently complicated, it may not be possible to hand-solve the
optimality conditions, and hence this approach is not generally viable.

The situation only gets worse when the problem contains equality and/or inequality con-
straints. For these reasons, it seems reasonable to expect that numerical methods will be
needed for most nonlinear programming problems. In contrast to linear programming, where
the simplex method can handle most instances and reliable implementations are widely avail-
able, there is not a single preferred algorithm for solving nonlinear programs. Without
difficulty, one can find ten or fifteen methods in the literature and the underlying theory of
nonlinear programming is still evolving. A systematic comparison between methods is com-
plicated by the fact that a nonlinear method can be very effective for one type of problem

and

1

2.

yet fail miserably for another. In these notes, we sample a few ideas:
. the method of steepest ascent for unconstrained optimization,

the generalized reduced-gradient algorithm,

. the Lagrangian approach,

. sequential quadratic programming,

. subgradient optimization for nondifferentiable functions.

2.2. SOFTWARE 39

2.2 Software

Some software packages for solving nonlinear programs are:

1. CONOPT, GRG2, Excel’'s SOLVER (all three are based on the generalized reduced-
gradient algorithm),

2. MINOS, LANCELOT (both based on the Lagrangian approach),

3. QL, LSSOL, QPOPT (for solving quadratic programs; In this case, the optimality
conditions are linear. So, linear programming approaches are relevant: simplex method,
interior point method),

4. MATLAB optimization toolbox, SNOPT, NLPQL (sequential quadratic programming).

A good source for learning about existing software is the web site

http://www-neos.mcs.anl.gov /neos/
at Argone National Labs.

Of course, as is the case for linear programming, you will need a modeling language to
work efficiently with large nonlinear models. Two of the most popular are GAMS and AMPL.
Most of the optimizers described above accept models written is either of these mathematical
programming languages.

2.3 Line search

Before discussing optimization methods for multivariate constrained problems, we start with
line search (for functions of one variable), an important component to many nonlinear pro-
gramming algorithms.

2.3.1 Binary search

Binary search is a very simple idea for solving numerically f(x) = 0, where f is a function of
a single variable.

For example, suppose we want to find the maximum of g(x) = 2% —e*. This is equivalent
to solving the equation ¢'(z) = 622 — e = 0. But there is no closed form solution. So we
solve the equation numerically, through binary search. If we let f(z) = 622 — e®, we first look
for two points, say a,b, such that the signs of f(a) and f(b) are opposite. Here a = 0 and
b =1 would do since f(0) = —1 and f(1) ~ 3.3. Since f is continuous, we know that there
exists an = with 0 < z < 1 such that f(z) = 0. We say that our confidence interval is [0,1].
Now let us try the middle point z = 0.5. f(0.5) ~ —0.1487 < 0 so we get the new confidence
interval [0.5, 1.0]. We continue with = 0.75 and since f(0.75) > 0 we get the confidence
interval [0.5,0.75]. Repeating this, we converge very quickly to a value of x where f(z) = 0.
Here, after 10 iterations, we are within 0.001 of the real value.

In general, if we have a confidence interval of [a,b], we evaluate f(%2) to cut the confi-
dence interval in half.

Binary search is fast. It reduces the confidence interval by a factor of 2 for every iteration,
so after k iterations the original interval is reduced to (b—a)x27¥. A drawback is that binary

40 CHAPTER 2. NONLINEAR PROGRAMMING AND PORTFOLIO OPTIMIZATION

search only finds one solution. So, if g had local extrema in the above example, binary search
could converge to any of them. In fact, most algorithms for nonlinear programming are
subject to failure for this reason. It turns out that, in the above example, g is concave and
therefore binary search finds the unique maximum.

Example 2.3.1 Binary search can be used to compute the internal rate of return r of an
investment. Mathematically, r is the interest rate that satisfies the equation

F F F3 Fy
it ———-C=0
147 + (147)2 + (1+7r)3 toee (147N
where
F, = cash flow in yeart
N = number of years
C = cost of the investment

As an example, consider a 4-year noncallable bond with a 10% coupon rate paid annually
and a par value of $1000. Such a bond has the following cash flows:

t Years from now F
1 $ 100
2 100
3 100
4 1100

Suppose this bond is now selling for $900. Compute the yield of this bond.

The yield r of the bond is given by the equation

100 n 100 n 100 n 1100 900 = 0
L+r (1472 (Q+7r)3 (1+7r)4 B

Let us denote by f(r) the left-hand-side of this equation. We find r such that f(r) = 0 using
binary search.

We start by finding values (a,b) such that f(a) > 0 and f(b) < 0. In this case, we expect
r to be between 0 and 1. Since f(0) = 500 and f(1) = —743.75, we have our starting values.

Next, we let ¢ = 0.5 (the midpoint) and calculate f(c). Since f(0.5) = —541.975, we
replace our range with ¢ = 0 and b = 0.5 and repeat. When we continue, we get the following
table of values:

2.3. LINE SEARCH 41

Iter. a c b f(a) f(e) f(b)
1 0 0.5 1 500 -541.975 -743.75
2 0 0.25 0.5 500 -264.24 -541.975
3 0 0.125 0.25 500 24.85902 -254.24
4 0.125 0.1875 0.25 | 24.85902 -131.989 -254.24
5] 0.125 0.15625 0.1875 | 24.85902 -58.5833 -131.989
6 0.125 0.140625 0.15625 | 24.85902 -18.2181 -58.5833
7 0.125 0.132813 0.140625 | 24.85902 2.967767 -18.2181
8 10.132813 0.136719 0.140625 | 2.967767 -7.71156 -18.2181
9 10.132813 0.134766 0.136719 | 2.967767 -2.39372 -7.71156
10 | 0.132813 0.133789 0.134766 | 2.967767 0.281543 -2.39372
11 | 0.133789 0.134277 0.134766 | 0.281543 -1.05745 -2.39372
121 0.133789 0.134033 0.134277 | 0.281543 -0.3883 -1.05745

So the yield of the bond is r = 13.4%.
Of course, this routine sort of calculation is perfectly set up for calculation by computer.
For example, Excel’s SOLVER can search for any particular value of a function.

Golden Section Search

Golden section search is similar in spirit to binary search. It is used to compute the
maximum of a function f(z) defined on an interval [a, b].
It assumes that

(i) f is continuous

(ii) f has a unique local maximum in the interval [a, b].
The golden search method consists in computing f(c) and f(d) for a < d < ¢ < b.
o If f(c) > f(d), the procedure is repeated with the interval (a,b) replaced by (d,b).
o If f(c) < f(d), the procedure is repeated with the interval (a,b) replaced by (a,c).

Note: The name “golden section” comes from a certain choice of ¢ and d that yields fast
convergence, namely ¢ = a +r(b—a) and d = b+ r(a — b), where r = @ = .618034....
This is the golden ratio, already known to the ancient greeks.

Example 2.3.2 Find the mazimum of the function x® — 1022 + 2x in the interval [0, 1].

In this case, we begin with ¢ = 0 and b = 1. Using golden section search, that gives
d = 0.382 and ¢ = 0.618. The function values are f(a) =0, f(d) = —0.687, f(c) = —2.493,
and f(b) = —7. Since f(c) < f(d), our new range is a = 0, b = .618. Recalculating from the
new range gives d = .236, ¢ = .382 (note that our current ¢ was our previous d: it is this
reuse of calculated values that gives golden section search its speed). We repeat this process
to get the following table:

42 CHAPTER 2. NONLINEAR PROGRAMMING AND PORTFOLIO OPTIMIZATION

Iter. a d c b f(a) f(d) fle) f(b)
1 0 0382 0.618 1 0 -0.6869 -2.4934 -7
2 0 0.2361 0.382 0.618 0 -0.0844 -0.6869 -2.4934
3 0 0.1459 0.2361 0.382 0 0.079 -0.0844 -0.6869
4 0 0.0902 0.1459 0.2361 0 0.099 0.079 -0.0844
5] 0 0.0557 0.0902 0.1459 0 0.0804 0.099 0.079
6 0.0557 0.0902 0.1115 0.1459 | 0.0804 0.099 0.0987 0.079
7 0.0557 0.077 0.0902 0.1115 | 0.0804 0.0947 0.099 0.0987
8 0.077 0.0902 0.0983 0.1115 | 0.0947 0.099 0.1 0.0987
9 0.0902 0.0983 0.1033 0.1115 | 0.099 0.1 0.0999 0.0987
10 | 0.0902 0.0952 0.0983 0.1033 | 0.099 0.0998 0.1 0.0999
11 | 0.0952 0.0983 0.1002 0.1033 | 0.0998 0.1 0.1 0.0999
12 | 0.0983 0.1002 0.1014 0.1033 0.1 0.1 0.1 0.0999
13 | 0.0983 0.0995 0.1002 0.1014 0.1 0.1 0.1 0.1
14 | 0.0995 0.1002 0.1007 0.1014 0.1 0.1 0.1 0.1
15 | 0.0995 0.0999 0.1002 0.1007 0.1 0.1 0.1 0.1
16 | 0.0995 0.0998 0.0999 0.1002 0.1 0.1 0.1 0.1
17 | 0.0998 0.0999 0.1 0.1002 0.1 0.1 0.1 0.1
18 | 0.0999 0.1 0.1001 0.1002 0.1 0.1 0.1 0.1
19 | 0.0999 0.1 0.1 0.1001 0.1 0.1 0.1 0.1
20 | 0.0999 0.1 0.1 0.1 0.1 0.1 0.1 0.1
21 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Again we can use SOLVER to maximize this function directly.

2.4 Unconstrained Optimization: Optimality Conditions
Many of the concepts for functions of one variable can be extended to functions of several

variables. For example, the gradient extends the notion of derivative, the Hessian matrix
that of second derivative, etc.

2.4.1 Gradient

Given a function f of n variables x1,xs,...,x,, we define the partial derivative relative to
variable z;, written as 8%%, to be the derivative of f with respect to x; treating all variables
except x; as constant. Let x denote the vector (z1,x9,...,zy,). With this notation, f(z) =
flx, e, ... xn), %ﬁi(m) = (%%(xl,xg, ..., Ty), etc. The gradient of f at x, written Vf(x), is
5L ()
()
the vector ? . The gradient vector V f(x) gives the direction of steepest ascent of

Qﬁ(x)
OLn
the function f at point x. The gradient acts like the derivative in that small changes around

a given point x* can be estimated using the gradient.

2.4. UNCONSTRAINED OPTIMIZATION: OPTIMALITY CONDITIONS 43

fz* + A) ~ f(z¥) + AV f(z*)
where A = (Ay,...,A,) denotes the vector of changes.
Example 2.4.1 If f(z1,72) = 22 —3z1209+23, then f(1,1) = —1. What about f(1.01,1.01)?

In this case, z* = (1,1) and A = (0.01,0.01). Since %(1’1,1‘2) = 2z; — 3z9 and
OL (31, 29) = —3x1 + 239, we get
-1
ran=().

0o
So £(1.01,1.01) = £((1,1)+(0.01,0.01)) ~ £(1,1)+(0.01,0.01)Vf(1,1) = —1+(0.01,0.01) (j)
= —1.02.

2.4.2 Hessian matrix

Second partials %9%(35) are obtained from f(x) by taking the derivative relative to ; (this

yields the first partial 8%%(35)) and then by taking the derivative of 8%%(35) relative to ;. So

2 2 . .
we can compute 8;?1 8/;1 (x), 8;?1 81;2 () and so on. These values are arranged into the Hessian
matrix

82 f 92 f 0% f
81‘1281’1 (IL’) 8:1:]28:62 (x) Y Br11071n (IL’)
@) Toan@) i (@
H(.’L’) _ Or20x1 Or20xo OL20%
82) 82) ’ 82 ;
8:1:n8f:61 (l’) 8:1:n8f:62 (.’L‘) Tt men()

) . . . o _O%f _ _of
The Hessian matrix is a symmetric matrix, that is m(m) = m(m).

2.4.3 Maximum and Minimum
Optima can occur in three places:
1. at the boundary of the domain,
2. at a nondifferentiable point, or
3. at a point z* with Vf(z*) = 0.

We will identify the first type of point with Kuhn-Tucker conditions (see Section 2.7.2).
The second type is found only by ad hoc methods. The third type of point can be found by
solving the gradient equations V f(z*) = 0. To identify if a point z* with zero gradient is a
local maximum or local minimum, check the Hessian:

o If H(x*) is positive definite then x* is a local minimum.

44 CHAPTER 2. NONLINEAR PROGRAMMING AND PORTFOLIO OPTIMIZATION

o If H(x") is negative definite, then z* is a local maximum.

A square matrix A is positive definite if 27 Az > 0 for all nonzero column vectors .
It is negative definite if 7 Az < 0 for all nonzero x. These definitions are hard to check
directly. More useful in practice are the following properties, which hold when the matrix A
is symmetric (that is the case of interest to us), and which are easier to check.

The ith leading principal minor of A is the matrix A; formed by the first ¢ rows and
columns of A. So, the first leading principal minor of A is the matrix A; = (a11), the second

. o . . . ai;; @
leading principal minor is the matrix As = 12), and so on.
a1 a2

e The matrix A is positive definite if all its leading principal minors A, As,... A, have
strictly positive determinants.

e If these determinants are nonzero and alternate in signs, starting with det(A;) < 0,
then the matrix A is negative definite.

Example 2.4.2 Find the local extrema of f(x1,72) = o3 + 23 — 3x172.

This function is everywhere differentiable, so extrema can only occur at points z* such

that Vf(z*) = 0.
[323 -3
Vf(.’l,’) o (3(13% — 3:131)

This equals 0 iff (x1,22) = (0,0) or (1,1). The Hessian is
_ 6%1 -3
Hz) = (-3 61y)
So,
0 -3

Let H; denote the first principal minor of H(0,0) and let Hy denote its second principal
minor. Then det(H;) = 0 and det(Hz) = —9. Therefore H(0,0) is neither positive nor

negative definite.
6 -3
H(1,1) = (3 6)

Its first principal minor has det(H;) = 6 > 0 and its second principal minor has det(Hsy) =
36 —9 = 25 > 0. Therefore H(1,1) is positive definite, which implies that (1,1) is a local
minimum.

2.4. UNCONSTRAINED OPTIMIZATION: OPTIMALITY CONDITIONS 45

2.4.4 Global Optima

Finding global maxima and minima is harder. There is one case that is of interest.

We say that a domain is convez if every line drawn between two points in the domain lies
within the domain.

We say that a function f is convez if the line connecting any two points lies above the
function. That is, for all z,y in the domain and 0 < a < 1, we have

flaz+ (1—a)y) <af(z)+ (1 -a)f(y).

e If a function f is convex on a convex domain, and V f(z) = 0 has a solution z* in the
domain, then z* is a global minimum.

e If a function f is concave on a convex domain, and V f(x) = 0 has a solution x* in the
domain, then z* is a global maximum.

Is there an easy way to check that a function f is convex or concave? The answer is
to compute the Hessian matrix H(z). If H(z) is positive definite for every point z in the
domain, then f is convex. If H(z) is negative definite for every = in the domain, then f is
concave.

Actually, the concepts of positive definite and negative definite matrices need to be ex-
tended for our purpose. Let A be an n x n symmetric matrix. An i** principal minor of A is
an 4 X 4 matrix obtained from A by deleting n — i rows and the corresponding n — i columns.

e The matrix A is positive semidefinite if all its principal minors have nonnegative deter-
minants.

e The matrix A is negative semidefinite if the determinants of all i’k principal minors are
less than or equal to 0 when ¢ is odd, and greater than or equal to 0 when i is even.

Positive semidefinite and negative semidefinite matrices are relevant here for the following
reason.

f is convex on domain D if and only if its Hessian H(x) is positive semidefinite for all
in D.

f is concave on domain D if and only if its Hessian H(x) is negative semidefinite for all
x in D.

Example 2.4.3 Show that the function f(x1,12,73) = x{+ (21 +22)% + (v1 4+ 13)? is convex
over R3.

a%tl(w) =423 4 2(z1 + 2) + 2(71 + 73)
0,
oL (x) =2(z1 + 22)

2

2 2
H(flfl,xg,xg) = 2 2 0
0 2

46 CHAPTER 2. NONLINEAR PROGRAMMING AND PORTFOLIO OPTIMIZATION

The determinants of the three 1 x 1 principal minors are 12z% + 4, 2 and 2 (each is
positive), those of the three 2 x 2 principal minors are 1222 > 0, 1222 > 0 and 4, and the
determinant of the 3 x 3 principal minor is 4822 > 0. So H(x1,x2,73) is positive semidefinite
for all (21,2, 23) in N2, This implies that f is convex over 3. This conclusion also follows
from noting that f is the sum of convex functions.

2.5 The method of steepest ascent (or descent)

In this section, we consider unconstrained nonlinear programs of the form
mazimize f(x), where x = (z1,...,2y).

The simplest numerical method for finding a solution is based on the idea of going uphill
on the graph of the function f. The gradient of a function always points in the direction of
fastest increase. This suggests that, if our current estimate of the maximizing point is x,
we should move in the direction of V f(x¢). Now that we have a direction, deciding how far
we should go in this direction is just a line search. It can be performed by binary search or
by golden section search. This will provide a new estimate of the maximizing point and the
procedure can be repeated.

We illustrate this approach on the following example:

minimize f(x) = (v1 —2)* + (z1 — 229)2.

The first step is to compute the gradient.

V() = (4w = 2)* +2(e1 — 29), —4(w1 — 219)).

Next we need to choose a starting point. We arbitrarily select the point x° = (0,3).
Now we are ready to compute the steepest descent direction at point x°. It is the direction
opposite to the gradient vector computed at x°, namely

d® = —Vf(x°) = (44, -24).

If we move from x in the direction d°, we get a new point x4+ ad®. where a determines
how far we go (a = 0 corresponds to staying at x°). Since our goal is to minimize f, we
should move to a point x' = x° + ad® where « is chosen accordingly. The optimal value of
a can be found by solving the following one—dimensional minimization problem:

min f(x? 4+ ad®) = ([0 + 44a] — 2)* + ([0 + 44a] — 2[3 — 24a])?
= 37480960 — 68147203 + 549282 — 2512ar + 52.

This minimization can be performed through a numerical line search procedure such as
the golden section search. The main difficulty with using most line search procedures is that
it is necessary to specify an interval [a, b] over which to conduct the search. In our example a
could obviously be chosen equal to zero, but what should we select as b? One way is to start
with a trial value of 0.01||d°|| where ||d°| is the length of vector d°. Then we try 0.02||d°||,
0.04/|d°||, 0.08]|d°|| and so on. As soon as the function value goes down and then up, we stop
incrementing and select b as the last trial and a as the previous one.

In our example, the line search yields o = 0.062 as the optimum value. Therefore we get

x! = x0 4+ ad® = (0,3) + 0.062(44, —24) = (2.70,1.51).

Now we repeat the process starting from this point, by calculating the search direction
d! = —Vf(x!), conducting a line search in that direction and so forth. The iterations

2.6. THE GENERALIZED REDUCED GRADIENT METHOD 47

continue until some stopping creterion is met. For example, we might stop when ||V f(x*)||
is close enough to zero, or after we have performed a given number of iterations. Another
possible stopping criterion is that the successive values of x* are close enough together, say
|[x¥+1 — x¥|| < T where T is a tolerance parameter. Using T = 0.05, the algorithm stops
after determining x°. The results are summarized in the next table.

k| (af,2%) (df, dj) ab =M — x|
0 | (0.00, 3.00) (44.00, -24.0) 0.062 3.08

1] (2.70, 1.51) (-0.73,-1.28) 0.24 0.36

2 | (2.52,1.20) (-0.80, 0.48) 0.11 0.10

3] (243,1.25) (-0.18,-0.28) 0.31 0.11

4| (2.37,1.16) (-0.30, 0.20) 0.12 0.04

51 (2.33, 1.18)

If you plot the points x°, x!,...,x" in two dimensions, and draw lines between x* and

x*t1, you will observe the zigzagging phenomenon. When we pursue the steepest descent
algorithm for more iterations, the zigzagging phenomenon becomes even more pronounced
and the method is slow to converge to the optimal solution x* = (2,1). There are several
numerical techniques for modifying the method of steepest ascent that reduce the approach’s
propensity to zigzag, and thereby speed up convergence. One such technique, named the
Newton-Raphson method after the scientists who proposed it, employs a direction based on a
quadratic fit of the objective function. Specifically, the direction d* is found by solving the
linear system

n 92 f _ _of .
=1 Doz, = O fori=1,...,n.

Because the Hessian matrix is expensive to compute at each iteration, an approxima-
tion may be used instead. Such approaches are known as quasi-Newton methods. Other
acceleration approaches have been developed but we will not go into them here.

2.6 The generalized reduced gradient method

First we consider an example where the constraints are linear equations.

minimize f(x) = :L'% + x9 + .'L‘% + 24
g1(x) = z1+axet+deg+4as—4 =0
g2 (X) = —x1+x0+2x3—224+2 =0.

It is easy to solve the constraint equations for two of the variables in terms of the others.
Solving for xo and x3 in terms of x1 and x4 gives

9o =3x1 +8x4—8 and z3 = —x1 — 324 + 3.

Substituting these expressions into the objective function yields the following reduced prob-
lem:
minimize f(x1,14) = 23+ (321 + 8z4 — 8) 4 (—x1 — x4 + 3)% + 24.

This problem is unconstrained and therefore it can be solved by the method of steepest
descent (see previous section).

48 CHAPTER 2. NONLINEAR PROGRAMMING AND PORTFOLIO OPTIMIZATION

Now consider the possibility of approximating a problem where the constraints are nonlin-
ear equations by a problem with linear equations, which can then be solved like the preceding
example. To see how this works, consider the following example, which resembles the pre-
ceding one but has constraints that are nonlinear.

minimize f(x) = a2+ x9+ 73+ 34
gi(x) = x%+x2+4x3+4x4—4 =0
g(x) = —x1+a0+2w3—222+2 =0.

We use the following approximation, seen earlier:

9(x) ~ g(%) + Vg(%)(x - %)

This gives
T — I
G1(X) A (T2 + T + 4T3 + 454 — 4) + (271,1,4,4) | 2T 2
r3 — I3
T4 — Ty

~ 211 + w9 + dag +4ry — (22 +4) =0
and
Go(xX) =~ —x1 + 29 + 213 — 4Tg474 + (3 +2) = 0.

The idea of the generalized reduced gradient algorithm (GRG) is to solve a sequence of
subproblems, each of which uses a linear approximation of the constraints. In each iteration of
the algorithm, the constraint linearization is recalculated at the point found from the previous
iteration. Typically, even though the constraints are only approximated, the subproblems
yield points that are progressively closer to the optimal point. A property of the linearization
is that, at the optimal point, the linearized problem has the same solution as the original
problem.

The first step in applying GRG is to pick a starting point. Suppose that we start with
x? = (0,-8,3,0), which happens to satisfy the original constraints. It is possible to start
from an infeasible point, but the details of how to do that need not concern us until later.
Using the approximation formulas derived earlier, we form our first approximation problem
as follows.

minimize f(x) = a2+ x9+ 73+ 34
a1 (X) = wo+4drs+4xs—4 =0
g2 (X) = —x1+x0+223+2 =0.

Now we solve the equality constraints of the approximate problem to express two of the
variables in terms of the others. Arbitrarily selecting x5 and 3, we get

1
ro =211 +4x4 — 8 and xz3 = —§x1 — 2x4 + 3.

Substituting these expressions in the objective function yields the reduced problem
min f(z1,24) = 23 + (221 + 422 — 8) + (—%3?1 — 224 +3)% + 24.

Solving this unconstrained minimization problem yields 1 = —0.375, x4 = 0.96875.
Substituting in the equations for xo and x3 gives x9 = —4.875 and x3 = 1.25. Thus the first
iteration of GRG has produced the new point x! = (—0.375, —4.875, 1.25,0.96875).

2.6. THE GENERALIZED REDUCED GRADIENT METHOD 49

To continue the solution process, we would relinearize the constraint functions at the new
point, use the resulting system of linear equations to express two of the variables in terms of
the others, substitute into the objective to get the new reduced problem, solve the reduced
problem for x?, and so forth. Using the stopping criterion || x**! —x*|| < T where T = 0.0025,
we get the results summarized in Table 2.1.

(xllcaxgxl?f:xﬁ) f(Xk) ”XIH_1 — Xk“
(0.000, -8.000, 3.000, 0.000) 1.000 3.729
-0.375, -4.875, 1.250, 0.969) -2.203 0.572
-0.423, -5.134, 1.619, 0.620) -1.714 0.353
-0.458, -4.792, 1.537, 0.609) -1.610 0.022
-0.478, -4.802, 1.534, 0.610) -1.611 0.015

()
()
E |
(-0.488, -4.813, 1.534, 0.610) -1.612 0.008
()
()
()

-0.494, -4.818, 1.534, 0.610) -1.612 0.004
-0.497, -4.821, 1.534, 0.610) -1.612 0.002
-0.498, -4.823, 1.534, 0.610) -1.612

O O T W N~ O

Table 2.1: Summarized results

This is to be compared with the optimum solution which is
¥ = (—0.500, —4.825,1.534, 0.610).

Note that, in Table 2.1, the values of the function f(z*) are sometimes smaller than the
minimum value, which is -1.612! How is this possible? The reason is that the points z¥
computed by GRG are usually not feasible to the constraints. They are only feasible to a
linear approximation of these constraints.

Now we discuss the method used by GRG for starting at an infeasible solution: a phase 1
problem is solved to construct a feasible one. The objective function for the phase 1 problem
is the sum of the absolute values of the violated constraints. The constraints for the phase
1 problem are the nonviolated ones. Suppose we had started at the point x° = (1,1,0,1) in
our example. This point violates the first constraint but satisfies the second, so the phase 1
problem would be

minimize |x? 4+ 1o + 4xg + day — 4
—x1+m2+2x3—2x2+2 = 0.

Once a feasible solution has been found by solving the phase 1 problem, the method
illustrated above is used to find an optimal solution.

Finally, we discuss how GRG solves problems having inequality constraints as well as
equalities. At each iteration, only the tight inequality constraints enter into the system of
linear equations used for eliminating variables (these inequality constraints are said to be
active). The process is complicated by the fact that active inequality constraints at the
current point may need to be released in order to move to a better solution. We illustrate
the ideas on the following example.

50 CHAPTER 2. NONLINEAR PROGRAMMING AND PORTFOLIO OPTIMIZATION

minimize f(x1,22) = (x1—3)?+ (x2 — 2)?

xl—xQZO
513120
OSIL‘QSZ.

The first step in applying GRG is to pick a starting point. Suppose that we start from
x) = (1,0). This point satisfies all the constraints: x; — z9 > 0, 21 > 0 and z9 < 2 are
inactive, whereas the constraint xo > 0 is active. We have to decide whether x5 should stay
at its lower bound or be allowed to leave its bound.

Vf(x%) = (229 — 1,229 — 5) = (1,-5).

This indicates that we will get the largest decrease in f if we move in the direction d° =
—Vf(x%) = (-1,5), i.e. if we decrease z1 and increase xo. Since this direction is towards the
interior of the feasible region, we decide to release x5 from its bound. The new point will be
x! = x0 4+ a%d°, for some a® > 0. The constraints of the problem induce an upper bound
on o, namely o’ < 0.8333. Now we perform a line search to determine the best value of o
in this range. It turns out to be o’ = 0.8333, so x! = (0.8333,0.8333). Now, we repeat the
process: the constraint x1 — x9 > 0 is active whereas the others are inactive. Since the active
constraint is not a simple upper or lower bound constraint, we introduce a surplus variable,
say x3, and solve for one of the variables in terms of the others. Substituting x1 = xo + x3,

we obtain the reduced optimization problem

minimize f(zo,x3) = (v2+x3— 3)? + (22— 3)2
0 < T < 2
I3 > 0.

The reduced gradient is
Vf(xg,xg) = (2.’132 +2x3 — 14 229 — 5,229 + 223 — 1)
= (—2.667,0.667) at point (z2,23)! = (0.8333,0).

Therefore, the largest decrease in f occurs in the direction (2.667, —0.667), that is when
we increase xo and decrease x3. But x3 is already at its lower bound, so we cannot decrease
it. Consequently, we keep 3 at its bound, i.e. we move in the direction d' = (2.667,0) to
a new point (z2,73)? = (w9,23)" + a'd!. A line search in this direction yields ! = 0.25
and (z2,73)% = (1.5,0). The same constraints are still active so we may stay in the space of
variables o and x3. Since

Vf(ze,23) =(0,2) at point (wq,z3)? = (1.5,0)
is perpendicular to the boundary line at the current solution x> and points towards the
exterior of the feasible region, no further decrease in f is possible. We have found the
optimal solution. In the space of original variables, this optimal solution is z; = 1.5 and
To = 1.5.

This is how some of the most widely distributed nonlinear programming solvers, such as
Excel’s SOLVER, GINO, CONOPT, GRG2 and several others, solves nonlinear programs,
with just a few additional details such as the Newton-Raphson direction for line search (we
briefly mentioned this approach in the previous section). Compared with linear programs,
the problems that can be solved are significantly smaller and the solutions produced may not
be very accurate. So you need to be much more cautious when interpreting the output of a
nonlinear program.

2.7. LAGRANGIAN APPROACH 51
2.7 Lagrangian Approach

2.7.1 Equality Constraints

Suppose we have a problem:

Maximize 5 — (21 — 2)? — 2(zp — 1)?
subject to
1 +4x9 =3

If we ignore the constraint, we get the solution x; = 2,29 = 1, which is too large for the
constraint. Let us penalize ourselves A for making the constraint too big. We end up with a
function

L(z1,29,\) =5 — (21 — 2)% = 2(x2 — 1) + A(3 — 1 — 4x»)

This function is called the Lagrangian of the problem. The main idea is to adjust A so
that we use exactly the right amount of the resource.

A =0 leads to (2,1).
A =1 leads to (3/2,0) which uses too little of the resource.
A =2/3 gives (5/3,1/3) and the constraint is satisfied exactly.

We now explore this idea more formally. Given a nonlinear program (P) with equality
constraints:

Minimize (or maximize) f(z)

subject to
g1(x) =b
g2(x) = by
gm(w) =bn

a solution can be found using the Lagrangian:

m

L(z,A) = f(x) + Y Ni(bi — gi(x))

=1

Each \; gives the price associated with constraint .

The reason L is of interest is the following:

52 CHAPTER 2. NONLINEAR PROGRAMMING AND PORTFOLIO OPTIMIZATION
Assume z* = (27,23, ...,2)) maximizes or minimizes f(xz) subject to the
constraints g;(z) = b;, for i = 1,2,...,m. Then either

(i) the vectors Vgi(z*), Vga(z*),..., Vgn(z*) are linearly dependent,
or
(i) there exists a vector A* = (A],A3,..., A},) such that VL(z*, A*) = 0.
Le.
OL oy _OL . o _OL ..
@A) = S) = = S M) =0
oL *ooyk) oL *ONF) —
and 8)\1(JAY) = = o — (", \") =0

Of course, Case (i) above cannot occur when there is only one constraint. The following
example shows how it might occur.

Example 2.7.1
Minimize x1 + x9 + x%
subject to
I = 1
2+ a3 =1
It is easy to check directly that the minimum is acheived at (z1,z2,23) = (1,0,0). The
associated Lagrangian is

2 2)

L($1,$2,$3,)\1,>\2) =x1 + T2 +x§+)\1(1 — 1’1) +)\2(1 —x7 — 75).

Observe that
oL

9y

and consequently 88_3;L2 does mot vanish at the optimal solution. The reason for this is the

(1,0,0,)\1,)\2) =1 for all)\1,)\2,

following. Let g1(z1,72,73) = x1 and go(w1, 79, 73) = 22 + 23 denote the left hand sides of
the constraints. Then Vg;(1,0,0) = (1,0,0) and Vg2(1,0,0) = (2,0, 0) are linearly dependent
vectors. So Case (i) occurs here!

Nevertheless, Case (ii) is the fundamental case. For example, if f(z) is concave and all
of the g;(z) are linear, then any feasible 2* with a corresponding A* making VL(z*, A*) =0
maximizes f(x) subject to the constraints. Similarly, if f(x) is convex and each g;(z) is linear,
then any z* with a A* making VL(z*, *) = 0 minimizes f(z) subject to the constraints.

Economic Interpretation

The values A; have an important economic interpretation: If the right hand side b; of Con-
straint ¢ is increased by A, then the optimum objective value increases by approximately
AFA.

2.7. LAGRANGIAN APPROACH 53

In particular, consider the problem

Maximize p(z)
subject to
g(x) =0,

where p(x) is a profit to maximize and b is a limited amount of resource. Then, the optimum
Lagrange multiplier A* is the marginal value of the resource. Equivalently, if b were increased
by A, profit would increase by A*A. This is an important result to remember.

Similarly, if

Minimize ¢(x)
subject to
d(z) = b,

represents the minimum cost ¢(z) of meeting some demand b, the optimum Lagrange multi-
plier A* is the marginal cost of meeting the demand.

Example 2.7.2 Suppose we have a refinery that must ship finished goods to some storage
tanks. Suppose further that there are two pipelines, A and B, to do the shipping. The cost of
shipping © units on A is ax?®; the cost of shipping y units on B is by?, where a > 0 and b > 0
are given. How can we ship Q units while minimizing cost? What happens to the cost if Q
increases by r %?

Minimize ax® + by?

Subject to
r+y=Q
L(z,y,\) = az?® + by*> + M(Q — = — y)
oL
%(fv*,y*,)*) =2az" — N\ =0
oL
— (", y" A =2y — N =0
8y(1’ Yy A7) =20y
L
Z—A(m’*,y*,k*)=Q—x*—y*=0
The first two constraints give z* = 3y*, which leads to
Q. aQ ., 2abQ
Ca+b Y Ca+b’ a+b
d cost of L The Hessi trix H = 2 0} is positive definite si 0
and cost of 7%, The Hessian matrix H(z1,72) = 0 9p | I8 Ppositive definite since a >

and b > 0. So this solution minimizes cost, given a, b, Q.
If @ increases by r%, then the RHS of the constraint increases by A = r@Q and the
2
minimum cost increases by *A = %—. That is, the minimum cost increases by 2r%.

54 CHAPTER 2. NONLINEAR PROGRAMMING AND PORTFOLIO OPTIMIZATION

Example 2.7.3 How should one divide his/her savings between three mutual funds with
expected returns 10%, 10% and 15% repectively, so as to minimize risk while achieving an
expected return of 12%. We measure risk as the variance of the return on the investment:
when a fraction = of the savings is invested in Fund 1, y in Fund 2 and z in Fund 3, where
x4+ y + z = 1, the variance of the return has been calculated to be

40022 + 800y? + 200zy + 160022 + 400y .

So your problem is

min 40022 + 800y%2 + 200xy + 160022 + 400yz
s.t. z + Yy + 1.52 = 1.2
r + y + z = 1

Using the Lagrangian method, the following optimal solution was obtained
=05 y=01 z2=04 X\ =1800 A =—1380

where A; is the Lagrange multiplier associated with the first constraint and Ao with the
second constraint. The corresponding objective function value (i.e. the variance on the
return) is 390. If an expected return of 12.5% was desired (instead of 12%), what would be
(approximately) the correcponding variance of the return?

Since A = 0.05, the variance would increase by
AN = 0.05 x 1800 = 90.

So the answer is 3904+90=4%0.

2.7.2 Equality and Inequality Constraints
How do we handle both equality and inequality constraints in (P)? Let (P) be:

Maximize f(z)
Subject to
g(z) =0

gm(x) =bp,
hi(z) < dy

hp(x) <d,

If you have a program with > constraints, convert it into < by multiplying by —1. Also
convert a minimization to a maximization.
The Lagrangian is

m

P
Lz A) = f(@) + D Nilbi — gi(w)) + > pj(dj — hy(x))
j=1

i=1

2.7. LAGRANGIAN APPROACH 55

The fundamental result is the following:

Assume x* = (z},25,...,x}) maximizes f(z) subject to the constraints
gi(x) = b;, for i = 1,2,...,m and hj(x) < dj, for j = 1,2,...,p. Then
either

(i) the vectors Vgi(z*),...,Vgm(z*), Vhi(z*),...,Vh,(x*) are lin-
early dependent, or

(ii) there exists vectors * = (A},...,A},) and p* = (i, ..., u;) such
that

m p
V@) =Y N Vgi(a™) = Y 15 Vhi(z*) =0
=1 j=1

i (hj(z*) —dj) =0 (Complementarity)

pi >0

Again, Case (ii) is the fundamental case.

In general, to solve these equations, you begin with complementarity and note that either
u}‘f must be zero or hj(z*) —d; = 0. Based on the various possibilities, you come up with one
or more candidate solutions. If there is an optimal solution, then one of your candidates will
be it.

The above conditions are called the Kuhn—Tucker (or Karush—Kuhn—Tucker) conditions.
Why do they make sense?

For x* optimal, some of the inequalities will be tight and some not. Those not tight can
be ignored (and will have corresponding price uj = 0). Those that are tight can be treated
as equalities which leads to the previous Lagrangian stuff. So

5 (hj(z*) —dj) =0 (Complementarity)

forces either the price 4 to be 0 or the constraint to be tight.

Example 2.7.4 Minimize (x — 2)? +2(y — 1)?
Subject to
r+4y <3
T >y

First we convert to standard form, to get

Maximize —(z — 2)% — 2(y — 1)?
Subject to

r+4y <3

—rz+y<0

56 CHAPTER 2. NONLINEAR PROGRAMMING AND PORTFOLIO OPTIMIZATION

Lz, y, 1, p2) = —(x2 —2)* = 2(y — 1)* + 1 (3 — 2 — dy) + p2(0 + z —)

which gives optimality conditions

—2(z—2) - +p2=0
4y —1)—4pr —p2 =0
m@B—z—4y)=0
p2(z—y) =0
z+4y <3
—r+y<0
p, p2 = 0

Since there are two complementarity conditions, there are four cases to check:

1 =0, pus = 0: gives x = 2, y = 1 which is not feasible.

p1 =0,z —y=0: gives x =4/3,y =4/3, po = —4/3 which is not feasible.

pe =0,3—x—4y =0 gives v =5/3,y = 1/3, u1 = 2/3 which is O.K.

3—x—4y =0,z —y =0 gives x = 3/5,y = 3/5, u1 = 22/25, uo = —48/25 which is not
feasible.

Since it is clear that there is an optimal solution, x = 5/3,y = 1/3 is it!

Economic Interpretation

The economic interpretation is essentially the same as in the equality case. If the right
hand side of a constraint is changed by a small amount A, then the optimal objective changes
by p*A, where p* is the optimal Lagrange multiplier corresponding to that constraint. Note
that if the constraint is not tight then the objective does not change (since then p* = 0).

Handling Nonnegativity

A special type of constraint is nonnegativity. If you have a constraint zj > 0, you can
write this as —zp < 0 and use the above result. This constraint would get a Lagrange
multiplier of its own, and would be treated just like every other constraint.

An alternative is to treat nonnegativity implicitly. If z; must be nonnegative:

1. Change the equality associated with its partial to a less than or equal to zero:

JIOWE agz Z N

a%k

<

a%k

2. Add a new complementarity constraint:

of (x) 892 B
(a%k _; Zy 8$k) =0

2.8. QUADRATIC PROGRAMMING AND SEQUENTIAL QUADRATIC PROGRAMMING57

3. Don’t forget that x; > 0 for = to be feasible.
Sufficiency of conditions

The Karush-Kuhn—Tucker conditions give us candidate optimal solutions z*. When are
these conditions sufficient for optimality? That is, given «* with A* and p* satisfying the
KKT conditions, when can we be certain that it is an optimal solution?

The most general condition available is:

1. f(z) is concave, and

2. the feasible region forms a convex region.

While it is straightforward to determine if the objective is concave by computing its
Hessian matrix, it is not so easy to tell if the feasible region is convex. A useful condition is
as follows:

The feasible region is convex if all of the g;(x) are linear and all of the h;j(z) are convex.

If this condition is satisfied, then any point that satisfies the KK'T' conditions gives a point
that maximizes f(x) subject to the constraints.

2.8 Quadratic Programming and Sequential Quadratic Pro-
gramming

2.8.1 Quadratic Programming
Quadratic programming is the special case of nonlinear programming
Maximize f(x)

Subject to
g(z) =0

hp(w) <dp

where the function f is quadratic and the constraints g; and h; are linear. The Karush-Khun-
Tucker conditions for a quadratic program are linear equations plus nonnegativity on some
(or all) the variables and complementarity conditions. For example, the KKT-conditions for

minimize f(r1,22) = (x1— 3)? + (z2 — 2)?

are as follows:

58 CHAPTER 2. NONLINEAR PROGRAMMING AND PORTFOLIO OPTIMIZATION

2(1’1—%)4-,&1 =0
20w —5) —p —p2 =0
—r1+w22+85 =0

T9+ 89 =0, and
pis1 =0 (Complementarity condition)
pase =0 (Complementarity condition)

K1, 12,581,852 > 0

Except for the complementarity conditions, this looks very much like linear program-
ming. Indeed, there is a simplex-like algorithm due to Wolfe for solving quadratic programs.
The interior point method for linear programming can also be extended efficiently to solve
quadratic programs. When the objective function is of the form f(z) = 27Xz + Cx, where ¥
is positive definite, then a global optimum can be found. This is the case, for instance, when
3 is a variance-covariance matrix. Very efficient algorithms are available to solve this class
of problems.

2.8.2 Sequential Quadratic Programming
To solve a general nonlinear program (NLP):

Maximize f(x)
Subject to
g(z) =0

gm(x) =bp,
hi(x) < dy

hp(x) <d,

one might try to capitalize on the good algorithms available for solving quadratic programs.
This is the idea behind sequential quadratic programming. At the current feasible point z*,
the problem (NLP) is approximated by a quadratic program: a quadratic approximation of
the objective is computed as well as linear approximations of the equality constraints and of
the active inequality constraints. The resulting quadratic program is of the form

minimize 1*(x —a¥) + 3(x — 2*)T By (z — 2¥)
Vgi(z*) T (x — 2%) + gi(z¥) =0 for all 4
Vh (@) (x — 2F) + hj(2¥) <0 for all active j

and can be solved with one of the specialized algorithms. The optimal solution z**! of the
quadratic program is used as the current point for the next iterate. Sequential quadratic
programming iterates until the solution converges. A key step is the approximation of (NLP)
by a quadratic program, in particular the choice of the vector r* and matrix B in the
quadratic approximation of the objective. For details the reader is referred to the survey of
Boggs and Tolle in Acta Numerica 1996.

2.9. SUBGRADIENT OPTIMIZATION 59

2.9 Subgradient Optimization
In this section, we consider unconstrained nonlinear programs of the form
min f(x)

where x = (z1,...,2,) and f is a nondifferentiable convex function. Since the gradient is not
defined at points = where f is nondifferentiable, the method of steepest descent described in
Section 2.5 is not applicable here (remember that this iterative method requires the existence
of a gradient direction to make the next step). However the notion of gradient can be
generalized as follows. A subgradient of f at point z* is a vector s* = (s}, ..., s}) such that

s*(x — %) < f(z) — f(2¥) for every x.

When the function f is differentiable, the subgradient is identical to the gradient. When
f is not differentiable at point z, there are typically many subgradients at x. For example,
consider the function of one variable

f(z) = max{l —z,z — 1}.

This function is nondifferentiable at the point = 1 and it is easy to verify that any vector
s such that —1 < s <1 is a subgradient of f at point x = 1.

Consider a nondifferentiable convex function f. The point £* is a minimum of f if and
only if f has a zero subgradient at z*. In the above example, 0 is a subgradient of f at point
x* = 1 and therefore this is where the minimum of f is achieved.

The method of steepest descent can be extended to nondifferentiable convex functions
by computing any subgradient direction and using the opposite direction to make the next
step. Altough subgradient directions are not always directions of ascent, one can nevertheless
guarantee convergence to the optimum point by choosing the step size appropriately.

The subgradient algorithm can be stated as follows.

1. Initialization: Start from any point z°. Set i = 0.

2. Tteration i: Compute a subgradient s’ of f at point x?. If s’ is 0 or close to 0,
stop. Otherwise, let 2! = 2% — d;s%, where d; > 0 denotes a step size, and perform the next
iteration.

Several choices of the step size d; have been proposed in the literature. To guarantee
convergence to the optimum, d; needs to be decreased very slowly. In practice, the following
choice is popular: start from dy = 2 and then half the step size if no improvement in the
objective value f(z?) is observed for k consecutive iterations (k = 7 or 8 is often used). The
subgradient method is well suited when one wants to get close to the optimum quickly and
when finding the exact optimum is not important. With this in mind, a stopping criterion
that is frequently used in practice is a maximum number of iterations (say 200) instead of
“s’ is 0 or close to 07.

We will see in the next chapter how subgradient optimization is used in a model to
construct an index fund.

60 CHAPTER 2. NONLINEAR PROGRAMMING AND PORTFOLIO OPTIMIZATION

2.10 Portfolio Optimization

Portfolio optimization is the problem of investing a given capital over a number of available
assets in order to maximize the “return” while minimizing the “risk”. In the Markowitz
model, the “return” of a portfolio is measured by the expected value of the random portfolio
return and the “risk” is measured by the variance of the portfolio return. In 1952, Markowitz
proposed a quadratic programming model for the construction of efficient portfolios, namely
portfolios whose expected returns cannot be improved without increasing their variance. In
Markowitz’s model, future asset prices are unpredictable but information is assumed to be
available about their expected returns and covariances. The model minimizes the variance of
the portfolio return subject to a given level of expected return and, if so desired, additional
investor imposed restrictions on the composition of the portfolio.

Although this technique can, in principle, be used with any variety of financial assets, we
will restrict attention to stocks here. For stocks, it is common to compute variances from
historical data. Expected returns may be either computed from historical data or estimated
from market research data: research analysts assess companies and prepare projections of
future performance which can be used in the Markowitz model. When historical data are
used to compute variances and /or expected returns, the frequency of the historical data used
should depend on the investment horizon of the investor. For short-term investments, daily
returns are reasonable.

2.10.1 The Model

Consider n assets. We want to determine the number u; of units of the " asset in the
portfolio. If short sales are permitted, u; can be less than 0.
Let x; denote the weight of the it asset in the portfolio, namely

I — bit
‘ prul + paug + ... + PrUp

where p; denotes the unit price of the i asset.

We assume that we have computed the expected yearly return p; of each asset as well
as the variance o7 of the returns of each asset and the covariance o;; between the returns of
every pair of assets ¢ and j. To simplify notation, we may also denote the variance by ;.

The expected return of the portfolio is then

n
Z HiZsg
i=1

and the variance of the portfolio return is

n o n
Z Zaijxixj.

i=1j=1

In principle, to find an efficient portfolio, we could maximize the expected return on the
portfolio for a fixed variance. However, it is computationally easier to handle a nonlinear
objective function and a linear constraint than the reverse. Hence, we set up the problem as

2.10. PORTFOLIO OPTIMIZATION 61

the minimization of the portfolio variance subject to a given level of expected return. Fix a
desired level of expected return g. Then the problem is

n n
min Z Z 043X
i=1j=1
subject to

n
> i > p
=1

n
Z T = 1
i=1
x; unrestricted for7=1,...,n

The last statement assumes that short sales are permitted. If short sales are not permitted,
then the additional constraints x; > 0 for ¢ = 1,...,n need to be added.

This model is thus a quadratic program, with a quadratic objective function and linear
constraints. Varying the desired level of expected return p and plotting the solutions of this
problem in mean-variance space traces out the Efficient Frontier.

Estimating the y; and oy;

The Markowitz model gives us an optimal portfolio assuming that we have perfect infor-
mation on the p;’s and o;;’s for the assets that we are considering. Therefore, an important
practical issue is the estimation of the y;’s and 0;’s. A reasonable approach for estimating
these data is to use time series of past returns (r;;= return of asset i from time ¢t —1 to time ¢,
wherei =1,...,n,t=1,...,T). Unfortunately, it has been observed that small changes in
the time series 73 lead to changes in the y;’s and o0;;’s that often lead to significant changes
in the “optimal” portfolio.

An attempt to mitigate this problem consists of computing the 1;’s and 0;;’s using a factor
model instead of directly from the time series r;;. That is, we use the §’s of the securities to
calculate the yi;’s and 0;’s, assuming the CAPM holds exactly. This can be done as follows.
Let

ri#= return of asset ¢ in period t, where i =1,...,n,and t=1,...,T,

rme= market return in period ¢,

r¢= return of risk free asset in period t.

Estimate 3; by a standard linear regression
Tit — gt = 0 + Bi(rme — i) + €t
where the vector ¢; represents the idiosyncratic risk of asset i. We assume that cov(e;, ;) = 0.

Knowing 3;, we compute y; by the relation

pi — E(ry) = Bi(E(rm) — E(ry))

and o;; by the relation
O'ij = ﬂz‘ﬂjo}%z fOI' 7 75‘]

62 CHAPTER 2. NONLINEAR PROGRAMMING AND PORTFOLIO OPTIMIZATION

2 2 2
Oii = 9 Oy + O,

where 02, denotes the variance of the market return and a?i the variance of the idiosyncratic

risk.

Diversification

In general, there is no reason to expect that solutions to the Markowitz model will be well
diversified portfolios. In fact, this model tends to produce portfolios with unreasonably large
weights in assets with small capitalization and, when short positions are allowed, unreasonably
large short positions. This issue is discussed in Green and Hollifield “When will Efficient
Portfolios be Well-Diversified?”, Journal of Finance 1992. Hence, portfolios chosen by this
quadratic program may be subject to idiosyncratic risk. Practitioners often use additional
constraints on the z;’s to ensure that the chosen portfolio is well diversified. For example, a
limit m may be imposed on the size of each x;, say

z;<m fori=1,...,n.

One can also reduce sector risk by grouping together investments in securities of a sector
and setting a limit on the exposure to this sector. For example, if my is the maximum that
can be invested in sector k, we add the constraint

¢ in sector k

Transaction Costs

We can add a portfolio turnover constraint to ensure that the change between the current
holdings 2° and the desired portfolio z is bounded by h. This constraint is essential in mean-
variance models since the covariance matrix is almost singular in most practical applications
and hence the optimal decision changes significantly with small changes in the problem data.
To avoid big changes when continuously reoptimizing the portfolio, turnover constraints are
imposed. Let y; be the amount of asset ¢ bought and z; the amount sold. We write

0

a) —x; <z, 2 >0,

n

> (yi+z) < h.

i=1

Instead of a turnover constraint, we can introduce transaction costs directly into the
model. Suppose that there is a transaction cost t; proportional to the amount of asset ¢
bought, and a transaction cost ¢, proportional to the amount of asset 7 sold. Suppose that
the portfolio is reoptimized once per period. As above, let 20 denote the current portfolio.
Then a reoptimized portfolio is obtained by solving

2.10. PORTFOLIO OPTIMIZATION 63

n n
win)" Y oy,
i=1j=1
subject to
n

> (wimi — tayi — tizi) > p

=1

n

Sa-t

i=1

:L'i—:cggyi fori=1,...,n
:L'?—:Bigzi fori=1,...,n
y; >0 fori=1,...,n
z; >0 fori=1,...,n
x; unrestricted fori =1,...,n

More on Parameter Estimation

Practitioners have observed that portfolios produced by the Markowitz model are ex-
tremely sensitive to the returns p; used. Only one small change in one p; may produce a
totally different portfolio xz. What can be done in practice to overcome this problem, or at
least reduce it? Michaud (in “Efficient Asset Management: A Practical Guide to Stock Port-
folio Management and Asset Allocation” Harvard Business School Press (1998)) recommends
to sample the mean returns p; and the covariance coefficients o;; from a confidence interval
around each parameter, and then combine the portfolios obtained by solving the Markowitz
model for each sample.

Black and Litterman (“Global Portfolio Optimization” Financial Analysts Journal 1992)
recommend to combine the investor’s view with the market equilibrium, as follows.

The expected return vector p is assumed to have a probability distribution that is the
product of two multivariate normal distributions. The first distribution represents the returns
at market equilibrium, with mean 7 and covariance 7Y, where 7 is a small constant and
¥ = (04j) denotes the covariance matrix of asset returns (Note that 7 should be small since
the variance of the random variable p is typically much smaller than the variance of the
underlying asset returns). The second distribution represents the investor’s view about the
w’s. These views are expressed as

Pu=q+e

where P is a k x n matrix and ¢ is a k-dimensional vector that are provided by the investor
and e is a normally distributed random vector with mean 0 and diagonal covariance matrix
Q (the stronger the investor’s view, the smaller the corresponding wj).

The resulting distribution for u is a multivariate normal distribution with mean

f=[(rS)"' + PP P (rE) ' + PTQ g

Black and Litterman use i as the vector of expected returns in the Markowitz model.

64 CHAPTER 2. NONLINEAR PROGRAMMING AND PORTFOLIO OPTIMIZATION

Example: Black and Litterman illustrate their approach on a simple three-asset example
and then in the context of a seven-country example. Let us go through the three-asset
example. Suppose we know the true structure of returns on three assets, A, B and C: For
each asset, the return is composed of an equilibrium risk premium plus a common factor and
an independent shock.

Ra=ma+7v42Z 4+ vy
Rp=7p+v8Z +vp
Re =mc+cZ +ve

where
R; = the return on the ith asset,
m; = the equilibrium risk premium on the 7th asset,
Z = a common factor,
v; = the impact of Z on the ith asset,
v; = an independent shock to the ith asset.

The covariance matrix 3 of asset returns is assumed to be known. The expected returns
of the assets are given by:

wi = m + B E[Z] + Elv].

We are not assuming that the world is in equilibrium, i.e. that E[Z] and E[y;] are equal
to 0. We do assume that the mean p; is itself an unobservable random variable whose
distribution is centered at the equilibrium risk premium. The uncertainty about u; is due to
the uncertainty about E[Z] and E[y;]. Furthermore we assume that the degree of uncertainty
about E[Z] and E[y;] is proportional to the volatilities of Z and v; respectively. This implies
that p; is distributed with a covariance structure proportional to 3. Thus the covariance
matrix of expected returns is 7X for some scalar 7. Because the uncertainty in the mean is
much smaller than the uncertainty in the return itself, 7 is close to zero. The equilibrium risk
premiums m; together with 73 determine the equilibrium distribution of expected returns.
We assume that this information is known to all investors.

In addition, we assume that each individual investor provides additional information
about expected returns in terms of views. For example, one type of view is a statement of
the form: “I expect that asset A will outperform asset B by 2 %”. We interpret such a view
to mean that the investor has subjective information about the future returns of assets A
and B. We also need a measure of the investor’s confidence in his views. This measure is
used to determine how much weight to put on the investor’s view when combining it with the
equilibrium. Consider the limiting case where the investor is 100 % sure of his views. Then
we can simply represent the investor’s view as a linear restriction on the expected returns:

HA— HB ={(
where here ¢ = 0.02. We can then compute the distrubution of y = (u4, 5, uc)” conditional
on the equilibrium and this information. This is a relatively straightforward problem in
multivariate statistics. To simplify, assume a normal distribution for the means of the random
components. The equilibrium distribution of y is given by the normal distribution N(m, 7%)
where m = (74,75, 7c)?. To obtain the mean fi of the normal distribution conditional on
the linear equation puyg — pup = g, we need to find the solution to the problem

2.10. PORTFOLIO OPTIMIZATION 65

min(—)7 (r5) " (u — 7)
subject to pa — pup = gq.

Let us write the constraint as Pu = ¢q. That is, P is the vector (1,—1,0). Using the
optimality conditions presented in Section 2.7.1, the solution to the above minimization
problem can be shown to be

=1+ (r2)PT[P(r2)PT)" (¢ — Pr).

For the special case of 100 % confidence in a view, this conditional mean [is the vector of
expected returns that Black and Litterman use in the Markowitz model. In the more general
case where the investor is not 100 % confident, they assume that the view can be summarized
by a statement of the form Pu = ¢ + € where P and ¢ are given by the investor and € is
an unobservable normally distributed random variable with mean 0 and variance 2. When
there is more than one view, the vector of views can be represented by Pu = g + € where
we now interpret P as a matrix (with one row for each view) and € is a normally distributed
random vector with mean 0 and diagonal covariance matrix 2. A diagonal 2 corresponds
to the assumption that the views are independent. When this is the case, i is given by the
formula

A= ()" + PP P () + PP),

as stated earlier. We refer to the Black and Litterman paper for additional details and an
example of an international portfolio.

Mean-Absolute Deviation to Estimate Risk

Konno and Yamazaki (“Mean-Absolute Deviation Portfolio Optimization” Management
Science 1991) propose a linear programming model instead of the classical quadratic model.
Their approach is the following.

The volatility of the portfolio return is

- JE[&(& .

=1

where R; denotes the random return of asset i.
The Li-risk of the portfolio return is defined as

w = E| Z(Ri — i) zi]]-

=1
Konno and Yamazaki use the following theorem: If (Ry, ..., R,) are multivariate normally
distributed random variables, then w = \/ga.
This theorem implies that minimizing o is equivalent to minimizing w when (Ry, ..., R,)

is multivariate normally distributed. Then the Markowitz model can be formulated as

min B[] Y (R; — pi)i]
=1

subject to

66 CHAPTER 2. NONLINEAR PROGRAMMING AND PORTFOLIO OPTIMIZATION

Xr; = 1
=1
0<z;<m; fori=1,...,n.
Let r; be the realization of random variable R; during period ¢ for ¢t = 1,...,7T, which

we assume to be available through the historical data or from future projection. Then

1 X
Hi = = Z Tit
T t=1
Furthermore
n 1 T n
E[|Y (R — pa)ail] = T SO (ra — pa)ai
i=1 t=1 =1

Note that the abolute value in this expression makes it nonlinear. But it can be linearized
using additional variables. Indeed, one can replace |x| by y + z where x = y — z and y, z > 0.
When the objective is to minimize y + z, at most one of y or z will be positive. Therefore
the model can be rewritten as

T

min Z Yt + 2z
t=1
subject to
n

yt—zt=2(rit—,ui)x¢ fort=1,....,T

=1

n
> i > p
=1

n

Z.’L‘Z‘=1

=1

0<z;,<m; fori=1,...,n
ytZO, ZtZO fOrt=1,...,T

This is a linear program! Therefore this approach can be used to solve large scale portfolio
optimization problems.

2.10.2 Suggestions for a Project

Investigate the performance of one of the following models: classical Markowitz model, or
variations proposed by Michaud, or Black-Litterman or Konno-Yamazaki.

e Choose 30 stocks and retrieve their historical returns over a meaningful horizon.

2.11. VALUE AT RISK AND BOND PORTFOLIO OPTIMIZATION 67

e Use the historical information to compute expected returns and the variance-covariance
matrix for these stock returns.

e Set up the model and solve it with MATLAB or Excel’s Solver for different levels p of
expected return. Allow for short sales and include no diversification constraints.

e Recompute these portfolios with no short sales and various diversification constraints.

e Investigate how sensitive the optimal portfolios that you obtained are to small changes
in the data (for example how sensitive are they to a small change in the expected return
of the assets).

e You currently own the following portfolio: 2 = 0.20 for i = 1,...,5 and 2 = 0 for
i =0,...,30. Include turnover constraints to reoptimize the portfolio for a fixed level
1 of expected return and three different values of h.

e You currently own the following portfolio: 2 = 0.20 for i = 1,...,5 and 2 = 0 for
i = 6,...,30. Reoptimize the portfolio considering transaction costs for buying and
selling. Solve for a fixed level p of expected return and three different transaction costs
(0.2 %, 0.5 % and 2 %).

2.11 Value at Risk and Bond Portfolio Optimization

The traditional approach to controling risk has been to balance the mean and variance of
returns. In this approach, the efficient frontier is the set of Pareto optimal points with two
conflicting criteria: mean and variance. This is appropriate when the portfolio returns are
normally distributed. However, when the distibution of returns is heavily skewed and there
is a non negligible possibility of large losses, a different measure of risk needs to be used. For
example, a portfolio of bonds from emerging markets (Brazil, Russia, Malaysia etc) might
be characterized by a large likelihood of small earnings, coupled with a small chance of
loosing a large amount of the investment. The loss distribution is heavily skewed and, in
this case, standard mean-variance analysis to characterize market risk is inadequate. In this
section, we describe a new approach for minimizing portfolio credit risk. Credit risk is the
risk of a trading partner not fulfilling their obligation in full on the due date or at any time
thereafter. Losses can result both from default and from a decline in market value stemming
from downgrades in credit ratings. A good reference is the paper of Anderson, Mausser,
Rosen and Uryasev, “Credit risk optimization with Conditional Value-at-Risk criterion”,
Mathematical Programming B 89 (2001) 273-291.

Let y denote a vector of random events and let p(y) be its known probability distribution.
Let = denote a vector of decisions.

1. We make decision z,

2. Random event y is realized.

Let f(z,y) denote the loss function when decision x is made and random event y occurs.

68 CHAPTER 2. NONLINEAR PROGRAMMING AND PORTFOLIO OPTIMIZATION

The Value-at-Risk (VaR) for a given 0 < 8 < 1 is the minimum value of o such that

Prif(z,y) <a] > S.

It follows from the definition that the VaR « depends on x and 5. We denote it by ag(x).

The Conditional Value-at-Risk (CVaR) for a given 0 < 8 < 1 is the expected loss, condi-
tional on this loss being greater than or equal to the VaR:

C5(2) =15 Yo pif(zy)
Jif (zy5)>as(x)
Example:
Suppose we are given the loss function f(z,y) for a given decision z as f(x,y) = —y where

y = 75 — j with probability 1 % for j = 0,...,99. We would like to determine the maximum
loss incured with 95% probability. This is the value at risk ag(z). Let 3 = 95%. Then the
VaR is agse () = 20 since the loss is at most 20 with probability greater than 95 %.

The CVaR is @g59(z) = ﬁ(zo +21 422423 +24) x 1% = 22.

Model:

Let us focus on CVaR. The basic problem that we would like to solve is the following,
where X denotes the set of feasible decisions:

(1) min®g(x)
subject to x € X.

This is not a standard mathematical program since ag(z), which is unknown, appears as
a bound in the summation that defines ®g(x). To overcome this difficulty, we rewrite ®3(z)
as follows.

Let Fs(z,o) =a+ ﬁ Z;n:l pj max|0, f(x,y;) — a]

Then
min ®g(r) = min Fg(z,a)
zeX over x € X and «

Exercise 7 Let 8 and x be given.
(1) Show that the minimum of Fg(x,) taken over o is Fz(x, a(x)).
(1t) Show that ®g(x) = F(z, a(z)).

Thus, to solve (1), it suffices to solve

(2) min Fa(z, o)
over x € X and a.

If f(x,y;) is a convex function of z, then Fj(x,a) is a convex function. Therefore, if X is
a convex set, then (2) is a convex nonlinear program. Solving this problem yields the global
optimum decision z*, its VaR o* and its CVaR ®g(z*).

If f(x,y;) is a linear function of x and X is given by linear equalities and inequalities,
then (2) is a linear program:

2.11. VALUE AT RISK AND BOND PORTFOLIO OPTIMIZATION 69

min a—l—ﬁzg’z:lpjzj
subject to x € X
zj > f(z,y;)) —a forj=1,....m
220 forj=1,...,m.

Example: Anderson, Mausser, Rosen and Uryasev consider a portfolio of 197 bonds from 29
different countries with a market value of $ 8.8 billion and duration of approximately 5 years.
Their goal is to rebalance the portfolio in order to minimize credit risk. That is they want
to minimize losses resulting from default and from a decline in market value stemming from
downgrades in credit ratings (credit migration). The loss due to credit migration is simply

fla,y)=(0-y'z

where b are the future values of each bond with no credit migration and y are the future
values with credit migration (so y is a random vector). The one-year portfolio credit loss
was generated using a Monte Carlo simulation: 20,000 scenarios of joint credit states of
obligators and related losses. The distribution of portfolio losses has a long fat tail. The
authors rebalanced the portfolio by minimizing CVaR. The set X of feasible porfolios was
described by the following constraints. Let x; denote the weight of asset ¢ in the portfolio.
Upper and lower bounds were set on each x;:

lZS.'L‘ZSUZ i=1,...,’rL

To calculate the efficient frontier, the expected portfolio return was set to at least u:
> HaTi =

To summarize, the linear program to be solved was as follows:

min o+ ﬁ Z;nzl PjZj
subject to z; > Y (b —yij)ri —a for j=1,....m

2j 20 forj=1,....m
lzéxléul z'=1,...,n
Zil’i=1

i ity = o

Consider 8 = 99%. The original bond portfolio had an expected portfolio return of 7.26%.
The expected loss was 95 million dollars with a standard deviation of 232 million. The VaR
was 1.03 billion dollars and the CVaR was 1.32 billion.

After optimizing the portfolio (with expected return of 7.26%), the expected loss was only
5 thousand dollars, with a standard deviation of 152 million. The VaR was reduced to 210
million and the CVaR to 263 million dollars. So all around, the characteristics of the portfolio
were much improved. Positions were reduced in bonds from Brazil, Russia and Venezuela,
whereas positions were increased in bonds from Thailand, Malaysia and Chile. Positions in
bonds from Colombia, Poland and Mexico remained high and each accounted for about 5 %
of the optimized CVaR.

70 CHAPTER 2. NONLINEAR PROGRAMMING AND PORTFOLIO OPTIMIZATION

Chapter 3

Integer Programming and
Constructing an Index Fund

3.1 Introduction

Consider investing in stocks. A linear programming model might come up with an investment
plan that involves buying 3,205.7 shares of stock XYZ. Most people would have no trouble
stating that the model suggests bying 3,205 shares or even 3,200 shares. On the other hand,
suppose you were trying to find the best among k alternatives (say k job offers). A model
that suggests % of each would be of little value. A 0,1 decision has to be made, and we would
like the model to reflect this.

This integrality restriction may seem rather innocuous, but in reality it has far reaching
effects. On one hand, modeling with integer variables has turned out to be useful in a wide
variety of applications. With integer variables, one can model logical requirements, fixed
costs and many other problem aspects. SOLVER can change a linear programming problem
into an integer program with a single command.

The downside of this power, however, is that problems with as few as 40 variables can be
beyond the abilities of even the most sophisticated computers. While these small problems
are somewhat artificial, real problems with more than 100 or so variables are often not
possible to solve unless they show specific exploitable structure. Despite the possibility (or
even likelihood) of enormous computing times, there are methods that can be applied to
solving integer programs. SOLVER is based on a method called “branch and bound”. More
sophisticated commercial codes (CPLEX and XPRESS are currently two of the best) use
both “branch and bound” and another complementary approach called “cutting plane”. The
purpose of this chapter is to show some integer programming applications and to describe
some of the solution techniques as well as possible pitfalls. The last section of this chapter
discusses a problem in finance that can be modeled as an integer program: constructing
an index fund. Another example will be given in the next chapter: structuring collaterized
mortgage obligations (CMO’s).

First we introduce some terminology. An integer programming problem in which all
variables are required to be integer is called a pure integer programming problem. If some
variables are restricted to be integer and some are not then the problem is a mized integer

71

T2CHAPTER 3. INTEGER PROGRAMMING AND CONSTRUCTING AN INDEX FUND

programming problem. The case where the integer variables are restricted to be 0 or 1 comes
up surprising often. Such problems are called pure (mized) 0-1 programming problems or
pure (mized) binary integer programming problems.

3.2 Modeling with Integer Variables

3.2.1 Capital Budgeting

Suppose we wish to invest $19,000. We have identified four investment opportunities. Invest-
ment 1 requires an investment of $6,700 and has a net present value of $8,000; investment 2
requires $10,000 and has a value of $11,000; investment 3 requires $5,500 and has a value of
$6,000; and investment 4 requires $3,400 and has a value of $4,000. Into which investments
should we place our money so as to maximize our total present value? Each project is a “take
it or leave it” opportunity: it is not allowed to invest partially in any of the projects.

As in linear programming, our first step is to decide on our variables. This can be much
more difficult in integer programming because there are very clever ways to use integrality
restrictions. In this case, we will use a 0-1 variable x; for each investment. If x; is 1 then we
will make investment j. If it is 0, we will not make the investment.

This leads to the 0-1 programming problem:

Maximize 8z1 + 11x9 + 6x3 + 424

subject to
6.7x1 + 10z9 + 5.5x3 + 3.4x4 < 19
zj; =0or 1L

Now, a straightforward “bang for buck” suggests that investment 1 is the best choice. In
fact, ignoring integrality constraints, the optimal linear programming solution is x1 = 1,29 =
0.89,2z3 = 0,24 = 1 for a value of $21,790. Unfortunately, this solution is not integral.
Rounding x5 down to 0 gives a feasible solution with a value of $12,000. There is a better
integer solution, however, of 1 = 0,29 = 1,23 = 1,24 = 1 for a value of $21,000. This
example shows that rounding does not necessarily give an optimal solution.

There are a number of additional constraints we might want to add. For instance, consider
the following constraints:

1. We can only make two investments.
2. If investment 2 is made, then investment 4 must also be made.
3. If investment 1 is made, then investment 3 cannot be made.

All of these, and many more logical restrictions, can be enforced using 0-1 variables. In
these cases, the constraints are:

.oy +xo+ 23 +a4 <2
2. 19 —x4 <0

3. .'L‘1+l’3§1.

3.2. MODELING WITH INTEGER VARIABLES 73

Solving the model with SOLVER

Modeling an integer program in SOLVER is almost the same as modeling a linear program.
For example, if you placed binary variables x1,xs,x3, 74 in cells B5:B8, simply Add the
constraint

B5:B8 Bin
to your other constraints in the SOLVER dialog box. Note that the Bin option is found in
the small box where you usually indicate the type of inequality: =, <= or >=. Just click on
Bin. That’s all there is to it!

It is equally easy to model an integer program within other commercial codes. The
formulation might look as follows.

! Capital budgeting example
VARIABLES
x(i=1:4)
0BJECTIVE
Max: 8*x(1) + 11*x(2) + 6*x(3) + 4x*x(4)
CONSTRAINTS
Budget: 6.7xx(1) + 10%x(2) + 5.5%x(3) + 3.4*x(4) < 19
BOUNDS
x(i=1:4) Binary
END

Exercise 8 (Optional) As the leader of an oil exploration drilling venture, you must deter-
mine the best selection of 5 out of 10 possible sites. Label the sites si,Sa,...,510 and the
expected profits associated with each as p1,pa,...,P1o-

(i) If site sy is explored, then site ss must also be explored. Furthermore, regional develop-
ment restrictions are such that

(ii) Exploring sites sy and sy will prevent you from exploring site sg.
(iii) Exploring sites s3 or sy will prevent you from exploring site ss.

Formulate an integer program to determine the best exploration scheme and solve with SOLVER.

3.2.2 The Lockbox Problem

Consider a national firm that receives checks from all over the United States. Due to the
vagaries of the U.S. Postal Service, as well as the banking system, there is a variable delay
from when the check is postmarked (and hence the customer has met her obligation) and
when the check clears (and when the firm can use the money). For instance, a check mailed
in Pittsburgh sent to a Pittsburgh address might clear in just 2 days. A similar check sent to
Los Angeles might take 4 days to clear. It is in the firm’s interest to have the check clear as
quickly as possible since then the firm can use the money. In order to speed up this clearing,
firms open offices (called lockboxes) in different cities to handle the checks.

TACHAPTER 3. INTEGER PROGRAMMING AND CONSTRUCTING AN INDEX FUND

For example, suppose we receive payments from 4 regions (West, Midwest, East, and
South). The average daily value from each region is as follows: $300,000 from the West,
$120,000 from the Midwest, $360,000 from the East, and $180,000 from the South. We are
considering opening lockboxes in L.A., Cincinnati, Boston, and/or Houston. Operating a
lockbox costs $90,000 per year. The average days from mailing to clearing is given in the
table. Which lockboxes should we open?

From L.A. Cincinnati Boston Houston
West 2 4 6 6
Midwest 4 2))
East 6 5 2 5
South 7 5 6 3

Table 3.1: Clearing Times

First we must calculate the losses due to lost interest for each possible assignment. For
example, if the West sends to Boston, then on average there will be $1,800,000 (= 6 x
$300,000) in process on any given day. Assuming an investment rate of 10%, this corresponds
to a yearly loss of $180,000. We can calculate the losses for the other possibilities in a similar
fashion to get table 3.2.

From L.A. Cincinnati Boston Houston
West 60 120 180 180
Midwest | 48 24 60 60
East 216 180 72 180
South 126 90 108 54

Table 3.2: Lost Interest (’000)

The formulation takes a bit of thought. Let y; be a 0-1 variable that is 1 if lockbox j is
opened and 0 if it is not. Let x;; be 1 if region i sends to lockbox j.

Our objective is to minimize our total yearly costs. This is:

60x11 + 120x12 + 180x13 + 18014 + 48291 + ... +90y1 + 90y2 + 90ys + 90y4.

One set of constraints is as follows:

>_; wij = 1 for all i (each region must be assigned to one lockbox).

A more difficult set of constraints is that a region can only be assigned to an open lockbox.
For lockbox 1 (L.A.), this can be written

211 + x21 + 231 + 41 < 100y,

(There is nothing special about 100; any number at least 4 would do.) Suppose we do not
open L.A. Then y; is 0, so all of 11, %91, 731, and x4 must also be. If y; is 1 then there is
no restriction on the x values.

3.2. MODELING WITH INTEGER VARIABLES ()

We can create constraints for the other lockboxes to finish off the integer program. For
this problem, we would have 20 variables (4 y variables, 16 = variables) and 8 constraints.
This gives the following integer program:

MIN 60 X11 + 120 X12 + 180 X13 + 180 X14 + 48 X21
+ 24 X22 + 60 X23 + 60 X24 + 216 X31 + 180 X32
+ 72 X33 + 180 X34 + 126 X41 + 90 X42 + 108 X43
+ 54 X44 + 90 Y1 + 90 Y2 + 90 Y3 + 90 Y4
SUBJECT TO
X11 + X12 + X13 + X14 = 1
X21 + X22 + X23 + X24 = 1
X31 + X32 + X33 + X34 = 1
X41 + X42 + X43 + X44 = 1
X11 + X21 + X31 + X41 - 100 Y1 <= O
X12 + X22 + X32 + X42 - 100 Y2 <= O
X13 + X23 + X33 + X43 - 100 Y3 <= 0
X14 + X24 + X34 + X44 - 100 Y4 <= O

ALL VARIABLES BINARY

If we ignore integrality, we get the solution x1; = 99 = 33 = 24 = 1, y1 = Y2 = y3 =
ys = 0.01 and the rest equals 0. Note that we get no useful information out of this linear
programming solution.

The above is a perfectly reasonable 0—1 programming formulation of the lockbox problem.
Note that many variations are possible (Boston costs more to operate in than other cities,
South won’t send to L.A., and so on).

There are other formulations, however. For instance, consider the sixteen constraints of
the form

Tij < Y5

These constraints also force a region to only use open lockboxes (check this!). It might
seem that a larger formulation is less efficient and therefore should be avoided. This is not
the case! If we solve the linear program with the above constraints, we get the solution
T11 = X1 = X33 = T43 = Y1 = y3 = 1 with the rest equal to zero. In fact, we have an integer
solution, which must therefore be optimal! Different formulations can have very different
properties with respect to their associated linear program. One very active research area is
to take common problems and find good reformulations.

The above is an example of a fized charge problem. There is a fixed charge for opening
a lockbox, but then it can be used as much as desired. There are many other types of fixed
charge problems.

3.2.3 Set Covering

To illustrate this model, consider the following location problem: A city is reviewing the
location of its fire stations. The city is made up of a number of neighborhoods, as illustrated
in figure 3.1.

T6CHAPTER 3. INTEGER PROGRAMMING AND CONSTRUCTING AN INDEX FUND

Figure 3.1: Map of the city

A fire station can be placed in any neighborhood. It is able to handle the fires for both
its neighborhood and any adjacent neighborhood (any neighborhood with a non—zero border
with its home neighborhood). The objective is to minimize the number of fire stations used.

We can create one variable x; for each neighborhood j. This variable will be 1 if we
place a station in the neighborhood, and will be zero otherwise. This leads to the following
formulation

MIN X1 + X2 + X3 + X4 + Xb + X6 + X7 + X8 + X9 +X10 +X11
SUBJECT TO

1) X1 + X2 + X3 +3X4 > 1

2) X1 + X2 + X3 + X5 >= 1

3) X1 +X2+ X3+ X4+ X5+ X6> 1
4) X1 + X3 + X4 + X6 + X7 > 1

5) X2 + X3 + X6 + X6 + X8 + X9 >= 1
6) X3 + X4+ X5+ X6+ X7 +X8> 1
7) X4 + X6 + X7 + X8 >= 1

8) X6 + X6 + X7 + X8 + X9 + X10 >= 1
19) X5 + X8 + X9 + X10 + X11 >= 1

10) X8 + X9 + X10 + X11 >= 1

11 X9 + X10 + X11 >= 1
ALL VARIABLES BINARY

The first constraint states that there must be a station either in neighborhood 1 or in some
adjacent neighborhood. The next constraint is for neighborhood 2 and so on.
One optimal solution to this is 3 = 1,28 = 1,29 = 1 and the rest have value 0.

3.3. SOLVING INTEGER PROGRAMS 7

This is an example of the set covering problem. The set covering problem is characterized
by having binary variables, > constraints each with a right hand side of 1, and having simply
sums of variables as constraints. In general, the objective function can have any coefficients,
though here it is of a particularly simple form.

3.2.4 Traveling Salesperson Problem

Consider a traveling salesperson who must visit each of 20 cities before returning home. She
knows the distance between each of the cities and wishes to minimize the total distance
traveled while visiting all of the cities. In what order should she visit the cities?

Let there be n cities, numbered from 1 up to n. For each pair of cities (4, j) let ¢;; be the
cost of going from city i to city j. Let’s let x;; be 1 if the person travels between cities i and
j (either from city i to city j or from j to 7).

The objective is to minimize Y i ; Zj-_:ll ¢ijr;j. The constraints are harder to find. Con-
sider the following set:

> @i =2 for all i.

J#i
These constraints say that every city must be visited. These constraints are not enough,
however, since it is possible to have multiple cycles, rather than one big cycle through all the
points. To handle this, we can use the following set of constraints:

ZZ.’L’Z‘]’ >2forall S C N.
i€S j¢s

This set states that, for any subset of cities S, the tour must enter and exit that set. These,
together with z;; € {0,1} is sufficient to formulate the traveling salesperson problem (TSP)
as an integer program.

Note however, that there are a tremendous number of constraints: for our 20 city problem,
that number is roughly 524,288. For a 300 city problem, this would amount to 10185179881672
43043134222844204689080525734196832968125318070224677190649881668353091698688 con-
straints... Try putting that into SOLVER!

Despite the apparent complexity of this formulation, it lies at the heart of the most
promising current approach to solving medium (100-1000 city) TSPs. We will see this again
in the cutting plane section.

3.3 Solving Integer Programs

We have gone through a number of examples of integer programs. A natural question is
“How can we get solutions to these models?” There are two common approaches. Histor-
ically, the first method developed was based on cutting planes (adding constraints to force
integrality). In the last forty years or so, however, the most effective technique has been
based on dividing the problem into a number of smaller problems in a method called branch
and bound. Recently (the last ten years or so), cutting planes have made a resurgence in the
form of facets and polyhedral characterizations. All these approaches involve solving a series
of linear programs. So that is where we will begin.

TSCHAPTER 3. INTEGER PROGRAMMING AND CONSTRUCTING AN INDEX FUND

3.3.1 Relationship to Linear Programming

Given an integer program

(IP) Min (or Max) cz
Az =10
z>0
T integer.

there is an associated linear program called the linear relaxation formed by dropping the
integrality restrictions:

(LR) Min (or Max) cx
Az =10
x > 0.

Since LR is less constrained than IP, the following are immediate:

e If IP is a minimization, the optimal objective value for LR is less than or equal to the
optimal objective for IP.

o If TP is a maximization, the optimal objective value for LR is greater than or equal to
that of IP.

e If LR is infeasible, then so is IP.

e If LR is optimized by integer variables, then that solution is feasible and optimal for
IP.

e If the objective function coefficients are integer, then, for minimization, the optimal
objective for IP is greater than or equal to the “round up” of the optimal objective for
LR. For maximization, the optimal objective for IP is less than or equal to the “round
down” of the optimal objective for LR.

So solving LR does give some information: it gives a bound on the optimal value, and,
if we are lucky, may give the optimal solution to IP. We saw, however, that rounding the
solution of LR will not in general give the optimal solution of IP. In fact, for some problems
it is difficult to round and even get a feasible solution.

Exercise 9 (Optional) Consider the problem

Maz 20x1 + 10z + 1023
2x1 + 20x9 + 423 < 15
6x1 + 20z9 + 4x3 = 20
1,29, T3 > 0 integer.

Solve this problem as a linear program. Then, show that it is impossible to obtain a feasible
integer solution by rounding the values of the variables.

3.3. SOLVING INTEGER PROGRAMS 79

3.3.2 Branch and Bound

We will explain branch and bound by solving the following integer program.

Max 8x1 + 11zg + 63 + 414
5x1 + Txo +4daws + 34 < 14
z; =0or 1.

The linear relaxation solution is 1 = 1,29 = 1,23 = 0.5, 4 = 0 with a value of 22. We know
that no integer solution will have value more than 22. Unfortunately, since x3 is not integer,
we do not have an integer solution yet.

We want to force z3 to be integer. To do so, we branch on x3, creating two new problems.
In one, we will add the constraint x3 = 0. In the other, we add the constraint z3 = 1.

Note that any optimal solution to the overall problem must be feasible to one of the
subproblems. If we solve the linear relaxations of the subproblems, we get the following
solutions:

xs = 0: objective 21.65, x1 = 1,29 = 1,23 = 0,24 = 0.667

x3 = 1: objective 21.85, x1 = l.ao = .7T14,23 = 1,24 = 0.

At this point we know that the optimal integer solution is no more than 21.85 (we actually
know it is less than or equal to 21 (Why?)), but we still do not have any feasible integer
solution. So, we will take a subproblem and branch on one of its variables. In general, we
will choose the subproblem as follows:

— We will choose an active subproblem, which so far only means one we have not chosen
before, and

— We will choose the subproblem with the highest solution value (for maximization)
(lowest for minimization).

In this case, we will choose the subproblem with x3 = 1, and branch on zs. Solving the
resulting subproblems, we get:

x3 = 1,29 = 0: objective 18, x1 = 1,20 = 0,23 = 1,24 = 1,

xrg = 1,29 = 1: objective 21.8, 1 = 0.6,290 = 1,23 = 1,24 = 0.

We now have a feasible integer solution with value 18. Furthermore, since the z3 = 1,29 =
0 problem gave an integer solution, no further branching on that problem is necessary. It is
not active due to integrality of solution. There are still active subproblems that might give
values more than 18. Using our rules, we will branch on problem x5 = 1,29 = 1 by branching
on x1 to get:

x3 = 1,290 = 1,21 = 0: objective 21, z1 = 0,20 = 1,23 = 1,24 = 1,

r3 = 1,20 = 1,21 = 1: infeasible.

Our best integer solution now has value 21. The subproblem that generates that is not
active due to integrality of solution. The other subproblem generated is not active due to
infeasibility. There is still a subproblem that is active. It is the subproblem with solution
value 21.65. By our “round-down” result, there is no better solution for this subproblem
than 21. But we already have a solution with value 21. It is not useful to search for another
such solution. We can fathom this subproblem based on the above bounding argument and
mark it not active. There are no longer any active subproblems, so the optimal solution value
is 21.

We have seen all parts of the branch and bound algorithm. The essence of the algorithm
is as follows:

S80CHAPTER 3. INTEGER PROGRAMMING AND CONSTRUCTING AN INDEX FUND

1. Solve the linear relaxation of the problem. If the solution is integer, then we are done.
Otherwise create two new subproblems by branching on a fractional variable.

2. A subproblem is not active when any of the following occurs:

(a) You used the subproblem to branch on,
(b

)

) All variables in the solution are integer,
(¢) The subproblem is infeasible,

)

(d) You can fathom the subproblem by a bounding argument.

3. Choose an active subproblem and branch on a fractional variable. Repeat until there
are no active subproblems.

That’s all there is to branch and bound! Depending on the type of problem, the branching
rule may change somewhat. For instance, if x is restricted to be integer (but not necessarily
0 or 1), then if z = 4.27 your would branch with the constraints z < 4 and = > 5 (not on
x=4and z =5).

In the worst case, the number of subproblems can get huge. For many problems in
practice, however, the number of subproblems is quite reasonable.

For an example of a huge number of subproblems, try the following in SOLVER:

MAX -X0+2ZX1+2X2+2X3+2ZX4+2X5+2X6+2X7
+ 2 X8+ 2 X9 +2X10 + 2 X11 + 2 X12 + 2 X13 + 2 X14
+ 2 X15 + 2 X16 + 2 X17

SUBJECT TO
2) X0+ 2X1+2X2+2X3+2ZX +2X5+2X6

+ 2 X7 +2 X8+ 2 X9 + 2 X10 + 2 X11 + 2 X12 + 2 X13
+ 2 X14 + 2 X15 + 2 X16 + 2 X17 <= 17

ALL VARIABLES BINARY

Note that this has only 18 variables. SOLVER looks at 48,619 subproblems, before deciding
the optimal objective is 16. The 100 variable version of this problem takes about 10%°
subproblems or about 3x 108 years (at 1000 subproblems per second). Luckily, most problems
take far less time.

Exercise 10 (Optional) Solve the following problem by the branch and bound algorithm. For
conventence, always select x1 as the branching variable when both x1 and xo are fractional.

Maz x1 + xo
2x1 + bxo < 16
6x1 + 5xo < 30
x1,z2 > 0 integer.

Exercise 11 (Optional) Repeat Exercise 10 assuming that x1 only is restricted to integer
values.

3.3. SOLVING INTEGER PROGRAMS 81

3.3.3 Cutting Plane Techniques

There is an alternative to branch and bound called cutting planes which can also be used to
solve integer programs. The fundamental idea behind cutting planes is to add constraints to
a linear program until the optimal basic feasible solution takes on integer values. Of course,
we have to be careful which constraints we add: we would not want to change the problem by
adding the constraints. We will add a special type of constraint called a cut. A cut relative
to a current fractional solution satisfies the following criteria:

1. every feasible integer solution is feasible for the cut, and
2. the current fractional solution is not feasible for the cut.

This is illustrated in figure 3.2.

1st Constraint

2nd Constraint

Figure 3.2: A cut

There are two ways to generate cuts. The first, called Gomory cuts, generates cuts from
any linear programming tableau. This has the advantage of “solving” any problem but has
the disadvantage that the method can be very slow. The second approach is to use the
structure of the problem to generate very good cuts. The approach needs a problem—by—
problem analysis, but can provide very efficient solution techniques.

General cutting planes

Consider the following integer program:
Max Txy + 99

—xr1 -+ 3x 2 < 6
Try + xo < 35
T, xo > 0 integer.

If we ignore integrality, we get the following optimal tableau:

82CHAPTER 3. INTEGER PROGRAMMING AND CONSTRUCTING AN INDEX FUND

Variable | 1 29 s1 S9 RHS

z 0 0 28/11 15/11 | 63
T9 0o 1 7/22 1/22 | 7/2
1 1 0 -1/22 3/22 | 9/2

—_

Let’s look at the first constraint:
X9+ 7/22s1 +1/22s9 = 7/2

We can manipulate this to put all of the integer parts on the left side, and all the fractional
parts on the right to get:

Tro — 3= 1/2 - 7/2281 — 1/2282
Now, note that the left hand side consists only of integers, so the right hand side must add
up to an integer. Which integer can it be? Well, it consists of some positive fraction minus a
series of positive values. Therefore, the right hand side can only be 0, —1,—2,..., it cannot
be a positive value. Therefore, we have derived the following constraint:

1/2 — 7/22s1 — 1/22s5 < 0.

This constraint is satisfied by every feasible integer solution to our original problem. But, in
our current solution, s; and so both equal 0, which is infeasible to the above constraint. This
means the above constraint is a cut, called the Gomory cut after its discoverer. We can now
add this constraint to the linear program and be guaranteed to find a different solution, one
that might be integer.
We can also generate a cut from the other constraint. Here we have to be careful to get
the signs right:
x1 — 1/22s81 4+ 3/22s9 =9/2
1+ (—1421/22)s1 +3/22s9 =4+ 1/2
x1—81 —4=1/2—-21/22s; — 3/22s,
gives the constraint
1/2 —21/22s; — 3/22s9 < 0.
In general, let |a] be defined as the largest integer less than or equal to a. This implies
[3.9] =3, |5] =5, and |—1.3] = —2.
If we have a constraint
T + Z a;x; =0b

with b not an integer, we can write each a; = |a;] + a}, for some 0 < a} < 1, and b= |b] + ¥/
for some 0 < b/ < 1. Using the same steps we get:

TE + Z[aijxi — bl =0t — Za;xi
to get the cut
b — Z agxi <0.
This cut can then be added to the linear program and the problem resolved. The problem is
guaranteed not to get the same solution.

This method can be shown to guarantee finding the optimal integer solution. There are
a couple of disadvantages:

3.3. SOLVING INTEGER PROGRAMS 83

1. Round—off error can cause great difficulties: Is that 3.000000001 really a 3, or should I
generate a cut? If I make the wrong decision I could either cut off a feasible solution
(if it is really a 3 but I generate a cut) or I could end up with an infeasible solution (if
it is not a 3 but I treat it as one).

2. The number of constraints that are generated can be enormous. Just like branch and
bound can generate a huge number of subproblems, this technique can generate a huge
number of constraints.

The combination of these makes this cutting plane technique impractical by itself. Re-
cently however, more powerful techniques have been discovered for special problem structure.
This is the subject of the next section.

Cuts for special structure

Gomory cuts have the property that they can be generated for any integer program. Their
weakness is their downfall: they do not seem to cut off much more than the linear pro-
gramming solution in practice. An alternative approach is to generate cuts that are specially
designed for the particular application. We saw that in a simple form in the lockbox problem,
where we used the constraints z;; < y; because they were stronger than), x;; < 100y;. In
this section, we examine the traveling salesperson problem.

Recall that there is no good, compact formulation for the TSP. Earlier, we generated a
formulation as follows:

Min 3,5 cijvig
> i Tij = 2 for all 4,
>ies 2jgs Tij = 2 for all S C N,
zi; € {0,1} for all 4, ;.

Recall that in the second set of constraints (called subtour elimination constraints) there are
many, many constraints. One approach is to initially ignore these constraints and simply
solve the problem over the first set of constraints. Suppose we have a six node problem as
shown in figure 3.3.

This problem can be formulated as follows:

MIN 4 X12 + 4 X13 + 3 X14 + 4 X23 + 2 X25 + 3 X36
+ 4 X45 + 4 X46 + 4 X56
SUBJECT TO
X12 + X13 + X14 = 2
X12 + X23 + X256 2
X13 + X23 + X36 = 2
X14 + X45 + X46 = 2
X25 + X45 + X566 = 2
X36 + X46 + Xb6 = 2
X12 <= 1
X13 <= 1

X14 <= 1

84CHAPTER 3. INTEGER PROGRAMMING AND CONSTRUCTING AN INDEX FUND

Figure 3.3: Six node traveling salesperson problem

X23 <= 1
X25 <= 1
X36 <= 1
X45 <= 1
X46 <= 1
X66 <= 1
END
LP OPTIMUM FOUND AT STEP 2
OBJECTIVE FUNCTION VALUE
1) 20.000000
VARIABLE VALUE REDUCED COST
X12 0.500000 0.000000
X13 0.500000 0.000000
X14 1.000000 0.000000
X23 0.500000 0.000000
X25 1.000000 0.000000
X36 1.000000 0.000000
X45 0.500000 0.000000
X46 0.500000 0.000000
X566 0.500000 0.000000

This solution, while obviously not a tour, actually satisfies all of the subtour elimination
constraints. At this point we have three choices:

1. We can do branch and bound on our current linear program, or

2. We can apply Gomory cuts to the resulting tableau, or

3.3. SOLVING INTEGER PROGRAMS 85

3. We can try to find other classes of cuts to use.

In fact, for the traveling salesperson problem, there are a number of other classes of cuts to
use. These cuts look at different sets of arcs and try to say something about how a tour can
use them. For instance, look at the set of arcs in figure 3.4:

@, O
0

©, O,

Figure 3.4: Arc Set for Comb Inequality

It is fairly easy to convince yourself that no tour can use more than 4 of these arcs. This
is an example of a broad class of inequalities called comb inequalities. This means that the
inequality stating that the sum of the x values on these arcs is less than or equal to 4 is a valid
inequality (it does not remove any feasible solution to the integer program). Our solution,
however, has 4.5 units on those arcs. Therefore, we can add a constraint to get the following
formulation and result:

MIN 4 X12 + 4 X13 + 3 X14 + 4 X23 + 2 X25 + 3 X36
+ 4 X45 + 4 X46 + 4 X56
SUBJECT TO
X12 + X13 + X14 = 2
X12 + X23 + X256 2
X13 + X23 + X36 = 2
X14 + X45 + X46 = 2
X25 + X45 + Xb6 = 2
X36 + X46 + X566 = 2
X12 + X13 + X23 + X14 + X256 + X36 <= 4
X12 <= 1
X13 <= 1
X14 <= 1
X23 <= 1
X256 <= 1
X36 <= 1
X45 <= 1
X46 <= 1
X56 <= 1

86CHAPTER 3. INTEGER PROGRAMMING AND CONSTRUCTING AN INDEX FUND

END
LP OPTIMUM FOUND AT STEP 2
OBJECTIVE FUNCTION VALUE
1) 21.000000
VARIABLE VALUE REDUCED COST
X12 1.000000 0.000000
X13 1.000000 0.000000
X14 0.000000 0.000000
X23 0.000000 0.000000
X256 1.000000 0.000000
X36 1.000000 0.000000
X45 1.000000 0.000000
X46 1.000000 0.000000
X56 0.000000 0.000000

So, we have the optimal solution.

This method, perhaps combined with branch and bound if the solution is still fractional
after all known inequalities are examined, has proven to be a very practical and robust method
for solving medium-sized TSPs. Futhermore, many classes of inequalities are known for other
combinatorial optimization problems. This approach, seriously studied only for the last five
years or so, has greatly increased the size and type of instances that can be effectively solved
to optimality.

Exercise 12 (Optional) For the problem
Max 8x1 + 11xzo + 623 + 414
Bxq 4+ Txo + 4a3 + 314 < 14
;=0 orl,
show that the following inequalities do not remove any feasible solutions:

r1 + 22 + 23 < 2,

]+ 1o+ 24 <2

Use these inequalities to solve the problem by SOLVER as a linear program (i.e. the 0-1
restrictions on x;j are replaced by x; < 1).

Solutions of Optional Exercises

Exercise 8:

3.3. SOLVING INTEGER PROGRAMS 87

10
Max ijl DjT;
subject to
10

j=1Tj

Tro — I3
T+ 27+ 28
xr3 + s
T4+ T

L

VA VAR VAR VAN
O~ = N O Ot

orlforj=1,...,10.

Exercise 9: First we solve the problem as a linear program with SOLVER. The solution
is ¢1 = 3.33333, r9 = 23 = 0. Rounding it yields x1 = 3, 9 = x3 = 0 which fails to satisfy
the constraint 6z + 20xz9 + 4x3 = 20.

In fact, the only feasible integer solution is

€1 :27372 =O,§E3=2,

and it cannot be obtained by simple rounding.

Exercise 10:

Using the branch and bound technique, three optimum integer solutions were found,
namely

.'L‘1=3 1’124 .'L‘1=5
x2=2 IL’Q=1 x2=0

each with value z = 5.

Exercise 11:

Using the branch and bound technique, we find that the optimum solution is 1 = 4,29 =
1.2 with value z3 = 5.2.

Exercise 12:

Since 1 = x2 = x3 = 1 does not satisfy the constraint bxy + Txo + 4dxs + x4 < 14, it
follows that z1 4+ x2 + x3 < 2 must hold for all solutions that satisfy the constraint.

Similarly for x1 + 22 + 24 < 2.

MAX 8*X(1) + 11xX(2) + 6*X(3) + 4*X(4)

SUBJECT TO

Budget: 5xX(1) + 7*X(2) + 4xX(3) + 3*X(4) < 14
Cutl: X(1) + X(2) + X(@3) <2

Cut2: X(1) + X(2) + X@4) <2

Bounds: X(i=1:4) < 1

The linear programming solution is ;1 = 0, o2 = 3 = x4 = 1 with objective value 21.

88CHAPTER 3. INTEGER PROGRAMMING AND CONSTRUCTING AN INDEX FUND

3.4 Constructing an Index Fund

An old and recurring debate about investing lies in the merits of active versus passive man-
agement of a portfolio. Active portfolio management tries to achieve superior performance
by using technical and fundamental analysis as well as forecasting techniques. On the other
hand, passive portfolio management avoids any forecasting techniques and rather relies on
diversification to achieve a desired performance. There are 2 types of passive management
strategies: “buy and hold” or “indexing”. In the first one, assets are selected on the basis of
some fundamental criteria and there is no active selling or buying of these stocks afterwards
(see the sections on Dedication in Chapter 1 and Portfolio Optimization in Chapter 2). In
the second approach, absolutely no attempt is made to identify mispriced securities. The
goal is to choose a portfolio that mirrors the movements of a broad market population or a
market index. Such a portfolio is called an index fund. Given a target population of n stocks,
one selects ¢ stocks (and their weights in the index fund), to represent the target population
as closely as possible.

In the last twenty years, an increasing number of investors, both large and small, have
established index funds. Simply defined, an index fund is a portfolio designed to track the
movement of the market as a whole or some selected broad market segment. The rising
popularity of index funds can be justified both theoretically and empirically.

e Market Efficiency: If the market is efficient, no superior risk-adjusted returns can be
achieved by stock picking strategies since the prices reflect all the information available
in the marketplace. Additionally, since the market portfolio provides the best possible
return per unit of risk, to the extent that it captures the efficiency of the market via
diversification, one may argue that the best theoretical approach to fund management
is to invest in an index fund.

¢ Empirical Performance: Considerable empirical literature provides strong evidence
that, on average, money managers have consistently underperformed the major indexes.
In addition, studies show that, in most cases, top performing funds for a year are
no longer amongst the top performers in the following years, leaving room for the
intervention of luck as an explanation for good performance.

e Transaction Cost: Actively managed funds incur transaction costs, which reduce the
overall performance of these funds. In addition, active management implies significant
research costs. Finally, fund managers may have costly compensation packages that
can be avoided to a large extent with index funds.

Strategies for forming index funds involve choosing a broad market index as a proxy for
an entire market, e.g. the Standard and Poor list of 500 stocks (S & P 500). A pure indexing
approach consists in purchasing all the issues in the index, with the same exact weights as
in the index. In most instances, this approach is impractical (many small positions) and
expensive (rebalancing costs may be incurred frequently). An index fund with ¢ stocks,
where ¢ is substantially smaller than the size n of the target population seems desirable. We
propose a large-scale deterministic model for aggregating a broad market index of stocks into a
smaller more manageable index fund. This approach will not necessarily yield mean/variance

3.4. CONSTRUCTING AN INDEX FUND 89

efficient portfolios but will produce a portfolio that closely replicates the underlying market
population.

3.4.1 A Large-Scale Deterministic Model

We present a model that clusters the assets into groups of similar assets and selects one
representative asset from each group to be included in the index fund portfolio. The model
is based on the following data, which we will discuss in some detail later:

pij = similarity between stock i and stock j

(For example, p; = 1, p;j < 1 for i # j and p;; is larger for more similar stocks)

n n
(M) Z = Mazimize Z Z Pij i
i=1j=1
n
subject to Zyj = q
j=1
n
Z.’L‘Z‘j = 1 forizl,...,n
j=1
T <y fori=1,....,n; j=1,...,n
2y5,y; = Oorl fori=1,...,n;j=1,...,n.

The variables y; describe which stocks j are in the index fund (y; = 1 if j is selected in
the fund, 0 otherwise). For each stock ¢ = 1,...,n, the variable x;; indicates which stock j
in the index fund is most similar to ¢ (x;; = 1 if j is the most similar stock in the index fund,
0 otherwise).

Interpret each of the constraints. Explain why the objective of the model can be in-
terpreted as selecting ¢ stocks out of the population of n stocks so that the total loss of
information is minimized.

Once the model has been solved and a set of ¢ stocks has been selected for the index fund,
a weight w; is calculated for each j in the fund:

n
wj = Z V;l’zj
=1

where V; is the market value of stock 7. So wj; is the total market value of the stocks
“represented” by stock j in the fund. The fraction of the index fund to be invested in stock
J is proportional to the stock’s weight wj, i.e.

_ Wi
ZfeF wy

Note that, instead of the objective function used in (M), one could have used an objective
function that takes the weights w; directly into account, such as > ", Z?Zl Vipijzij. The q

90CHAPTER 3. INTEGER PROGRAMMING AND CONSTRUCTING AN INDEX FUND

stocks in the index fund found by this variation of Model (M) would still need to be weighted
as explained in the previous paragraph.

Data Requirements

We need a coefficient p;; which measures the similarity between stocks 7 and j. There
are several ways of constructing meaningful coefficients p;;. One approach is to consider the
time series of stock prices over a calibration period 7" and to compute the correlation between
each pair of assets.

Testing the Model

Stocks comprising the S&P 500 were chosen as the target population to test the model.
A calibration period of sixty months was used. Then a portfolio of 25 stocks was constructed
using model (M) and held for periods ranging from three months to three years. The following
table gives the ratio of the population’s market value (normalized) to the index fund’s market
value. A perfect index fund would have a ratio equal unity.

Length | Ratio
1 QTR | 1.006
2 QTR | .99

1 YR 985
3YR .982

Table 3.3: Performance of a 25 stock index fund

Solution Strategy

Branch-and-bound is a natural candidate for solving model (M). Note however that the
formulation is very large. Indeed, for the S&P 500, there are 250,000 variables x;; and 250,000
contraints x;; < y;. So the linear programming relaxation needed to get upper bounds in the
branch-and-bound algorithm is a very large linear program to solve. It turns out, however,
that one does not need to solve this large linear program to obtain good upper bounds.
Cornuéjols, Fisher and Nemhauser (Management Science 23 (1977) pp 789-810) proposed to
solve model (M) using the following Lagrangian relaxation, which is defined for any vector
w=(Ul,...,Up):

n o n n n
L(u) = Maximize Z Zpijxij + Zuz(l - wa)
i=1 j=1

i=1j=1
n
subject to Zyj = q
j=1
vy < yj fori=1,...,n
j=1....n
xi5,y; = Oorl fori=1,...,n

3.4. CONSTRUCTING AN INDEX FUND 91

Property 1: L(u) > Z, where Z is the maximum for model (M).
Explain why.

The objective function L(u) may be equivalently stated as

n n n
i=1j=1 i=1
Let
o+ (pij —wi) if pij —u; >0
(pij —wa)™ = { 0 otherwise
and
n
Cj o= D (py—w)"
i=1
Then

Property 2:

n n
L(u) = max ZC’jyj+Zui
i=1

=1

n
subject to Zyj =q
j=1
yj=0or 1forj=1,...,n

Explain why.

Property 3: In an optimal solution of the Lagrangian relaxation, y; is equal to 1 for the
q largest values of Cj, and the remaining y; are equal to 0.
If p;j —u; > 0, then z;; = y; and otherwise z;; = 0.

Explain why.

Interestingly, the set of ¢ stocks corresponding to the ¢ largest values of C}; can also be
used as a heuristic solution for model (M). Indeed, construct an index fund containing these
q stocks and assign each stock ¢ = 1,...,n to the most similar stock in this fund. This
solution is feasible to model (M), although not necessarily optimal. This heuristic solution
provides a lower bound on the optimum value Z of model (M). As previously shown, L(u)
provides an upper bound on Z. So for any vector u, we can compute quickly both a lower
bound and an upper bound on the optimum value of (M). To improve upon the upper bound
L(u), we solve the nonlinear problem

min L(u).

Since L(u) is nondifferentiable and convex, we employ a subgradient optimization algorithm.
At each iteration, a revised set of Lagrange multipliers 4 and an accompanying lower and
upper bound to model (M) are computed. The algorithm terminates when these two bounds
match or when a maximum number of iterations is reached. See Chapter 2 for a description
of the subgradient method.

92CHAPTER 3. INTEGER PROGRAMMING AND CONSTRUCTING AN INDEX FUND

3.4.2 A Linear Programming Model

In this section, we consider a different approach to constructing an index fund. It can be
particularly useful as one tries to rebalance the portfolio at minimum cost. This approach
assumes that we have identified important characteristics of the market index to be tracked.
Such characteristics might be the fraction f; of the index in each sector ¢, the fraction of
companies with market cap in various ranges, the fraction of companies that pay no dividends,
the fraction in each region etc. Let us assume that there are m such characteristics that
we would like our index fund to track as well as possible. Let a;; = 1 if company j has
characteristic ¢ and 0 if it does not.

Let x; denote the optimum weight of asset j in the portfolio. Assume that initially, the
portfolio has weights x?. The problem of rebalancing the portfolio at minimum cost is the
following:

n
min Z(yj + z5)
j=1
subject to

n
Zaijxj:fi forizl,...,m
i=1

ij:l

j=1

xj :L'?Syj forj=1,....n
a:?—xjgzj forj=1,...,n
y; =0 forj=1,...,n
2 >0 forj=1,...,n
zj >0 forj=1,...,n

where y; denotes the fraction of asset j bought and z; the fraction sold.

Chapter 4

Dynamic Programming and
Structuring CMO’s

4.1 Introduction

Let’s begin with a simple capital budgeting problem. A corporation has $5 million to allocate
to its three plants for possible expansion. Each plant has submitted a number of proposals
on how it intends to spend the money. Each proposal gives the cost of the expansion (c¢) and
the total revenue expected (r). The following table gives the proposals generated:

Plant 1. | Plant 2. | Plant3

Proposal | ¢; r1 | ¢ re | ¢33 T3

—

1 0 0] 0 0] 0 O
2 1 5| 2 8| 1 4
3 2 6| 3 9 —
4 — — |4 12| — —

Table 4.1: Investment Possibilities

Each plant will only be permitted to enact one of its proposals. The goal is to maximize
the firms revenues resulting from the allocation of the $5 million.

A straightforward way to solve this is to try all possibilities and choose the best. In this
case, there are only 3 x 4 x 2 = 24 ways of allocating the money. Many of these are infeasible
(for instance, proposals 3, 4, and 1 for the three plants costs $6 million). Other proposals
are feasible, but very poor (like proposals 1, 1, and 2, which is feasible but returns only $3
million).

Here are some disadvantages of total enumeration:

1. For larger problems the enumeration of all possible solutions may not be computation-
ally feasible.

2. Infeasible combinations cannot be detected a priori, leading to inefficiency.

3. Information about previously investigated combinations is not used to eliminate inferior,
or infeasible, combinations.

93

94 CHAPTER 4. DYNAMIC PROGRAMMING AND STRUCTURING CMO’S

Note also that this problem cannot be formulated as a linear program, for the revenues
returned are not linear functions.

One method of calculating the solution is as follows:

Let’s break the problem into three stages: each stage represents the money allocated to
a single plant. So stage 1 represents the money allocated to plant 1, stage 2 the money to
plant 2, and stage 3 the money to plant 3. We will artificially place an ordering on the stages,
saying that we will first allocate to plant 1, then plant 2, then plant 3.

Each stage is divided into states. A state encompasses the information required to go
from one stage to the next. In this case the states for stages 1, 2, and 3 are

x1 = the amount of money spent on plant 1,

r9 = the amount of money spent on plants 1 and 2, and

r3 = the amount of money spent on plants 1, 2, and 3.

Associated with each state is a revenue. Note that to make a decision at stage 3, it is
only necessary to know how much was spent on plants 1 and 2, not how it was spent. Also
notice that we will want x3 to be 5.

Let’s try to figure out the revenues associated with each state. The only easy possibility
is in stage 1, the states x1. Table 4.2 gives the revenue associated with x;.

If the available | Then the optimal And the revenue
capital x1 is proposal is for stage 1 is
0 1 0
1 2 5
2 3 6
3 3 6
4 3 6
5 3 6

Table 4.2: Stage 1 computations.

We are now ready to tackle the computations for stage 2. In this case, we want to find
the best solution for both plants 1 and 2. If we want to calculate the best revenue for a given
T2, we simply go through all the plant 2 proposals, allocate the given amount of funds to
plant 2, and use the above table to see how plant 1 will spend the remainder.

For instance, suppose we want to determine the best allocation if x5 = 4. In stage 2 we
can do one of the following proposals:

Proposal 1 gives revenue of 0, leaves 4 for stage 1, which returns 6. Total: 6.
Proposal 2 gives revenue of 8, leaves 2 for stage 1, which returns 6. Total: 14.
Proposal 3 gives revenue of 9, leaves 1 for stage 1, which returns 5. Total: 14.
Proposal 4 gives revenue of 12, leaves 0 for stage 1, which returns 0. Total: 12.

The best thing to do with four units is proposal 1 for plant 2 and proposal 2 for plant
1, returning 14, or proposal 2 for plant 2 and proposal 1 for plant 1, also returning 14. In
either case, the revenue for being in state o = 4 is 14. The rest of table 4.3 can be filled out
similarly:

We can now go on to stage 3. The only value we are interested in is x3 = 5. Once again,
we go through all the proposals for this stage, determine the amount of money remaining and

4.1. INTRODUCTION 95

If the available | Then the optimal And the revenue
capital zo is proposal is for stages 1 and 2 is
0 1 0
1 1 5
2 2 8
3 2 13
4 2o0r3 14
5 4 17

Table 4.3: Stage 2 computations.

use table 4.3 to decide the value for the previous stages. So here we can do the following at
plant 3:

Proposal 1 gives revenue 0, leaves 5. Previous stages give 17. Total: 17.

Proposal 2 gives revenue 4, leaves 4. Previous stages give 14. Total: 18.

Therefore, the optimal solution is to implement proposal 2 at plant 3, proposal 2 or 3 at
plant 2, and proposal 3 or 2 (respectively) at plant 1. This gives a revenue of 18.

If you study this procedure, you will find that the calculations are done recursively. Stage
2 calculations is based on stage 1. Stage 3 only on stage 2. Indeed, given you are at a state,
all future decisions are made independent of how you got to the state. This is the principle
of optimality and all of dynamic programming rests on this assumption.

We can sum up these calculations in the following formulas:

Denote by 7(k;) the revenue for proposal k; at stage j, and by c(k;) the corresponding
cost,

and let fj(x;) be the revenue of state x; in stage j.

Then we have the following calculations

filer) = max {r(k)}

N k1 :c(k1)§x1

and

files) = kj:g{;ggj{r(kj) + fi—1(aj — c(k;))} for j = 2,3.

All we were doing with the above calculations was determining these functions.

The computations were carried out in a forward procedure. It was also possible to calcu-
late things from the “last” stage back to the first stage. We could define

y1 = amount allocated to stages 1, 2, and 3,

yo = amount allocated to stages 2 and 3, and

ys = amount allocated to stage 3.

This defines a backward recursion.

Corresponding formulas are:

Let f3(ys) be the optimal revenue for stage 3, given ys,

fa(y2) be the optimal revenue for stages 2 and 3, given ys,

and f1(y1) be the optimal revenue for stages 1, 2, and 3, given y;.

96 CHAPTER 4. DYNAMIC PROGRAMMING AND STRUCTURING CMO’S

The recursion formulas are:

f3(ys) = max {r(ks)}

k3:c(k3)<ys

filys) = kj:g}ggyj{r(kj) + fi+1(y; — clk;)}

If you carry out the calculations, you will come up with the same answer.

You may wonder why I have introduced backward recursion, particularly since the forward
recursion seems more natural. In this particular case, the ordering of the stages made no
difference. In other cases, though, there may be computational advantages of choosing one
over another. In general, the backward recursion has been found to be more effective in most
applications.

4.2 Characteristics of Dynamic Programming

There are a number of characteristics that are common to all dynamic programming problems.
These are

1. The problem can be divided into stages with a decision required at each stage.
In the capital budgeting problem the stages were the allocations to a single plant. The
decision was how much to spend.

2. Each stage has a number of states associated with it.
The states for the capital budgeting problem corresponded to the amount spent at that
point in time.

3. The decision at one stage transforms one state into a state in the next stage.
The decision of how much to spend gave a total amount spent for the next stage.

4. Given the current state, the optimal decision for each of the remaining states does not
depend on the previous states or decisions.
In the budgeting problem, it is not necessary to know how the money was spent in

previous stages, only how much was spent.

5. There exists a recursive relationship that identifies the optimal decision for stage j,
given that stage j + 1 has already been solved.

6. The final stage must be solvable by itself.

These last two are tied up in the recursive relationships given above.

The big skill in dynamic programming, and the art involved, is to take a problem and
determine stages and states so that all of the above hold. If you can, then the recursive
relationship makes finding the values relatively easy. Because of the difficulty in identifying
stages and states, we will do a fair number of examples.

4.3. THE KNAPSACK PROBLEM. 97

4.3 The Knapsack Problem.

The knapsack problem is a particular type of integer program with just one constraint. Each
item that can go into the knapsack has a size and a benefit. The knapsack has a certain
capacity. What should go into the knapsack so as to maximize the total benefit? As an
example, suppose we have three items as follows:

Item (j) | Weight (w;) Benefit(b;)
1 2 65
2 3 80
3 1 30

Table 4.4: Knapsack Items

Suppose the capacity of the knapsack is 5.

4.3.1 A Dynamic Programming Formulation

The stages represent the items: we have three stages j = 1,2,3. The state y; at stage j
represents the total weight of items j and all following items in the knapsack. The decision
at stage j is how many items j to place in the knapsack. Call this value k;.

This leads to the following recursive formulas: Let f;(y;) be the value of using y; units
of capacity for items j and following. Let |a| represent the largest integer less than or equal
to a.

f3(y;) = 30y;

fiyj) = maxy, <y {105k + fi41(y; — wik;)}.

4.3.2 An Alternative Dynamic Programming Formulation

There is another formulation for the knapsack problem. This illustrates how arbitrary our
definitions of stages, states, and decisions are. It also points out that there is some flexibility
on the rules for dynamic programming. Our definitions required a decision at a stage to take
us to the next stage (which we would already have calculated through backwards recursion).
In fact, it could take us to any stage we have already calculated. This gives us a bit more
flexibility in our calculations.

The recursion I am about to present is a forward recursion. For a knapsack problem, let
the stages be indexed by w, the weight filled. The decision is to determine the last item added
to bring the weight to w. There is just one state per stage. Let g(w) be the maximum benefit
that can be gained from a w pound knapsack. Continuing to use b; and w; as the weight and
benefit, respectively, for item j, the following relates g(w) to previously calculated g values:

g(w) = mj&X{bj +g(w —wj)}

Intuitively, to fill a w pound knapsack, we must end off by adding some item. If we add item
J, we end up with a knapsack of size w — w; to fill. To illustrate on the above example:
9(0) =0
g(1) = 30 add item 3.

98 CHAPTER 4. DYNAMIC PROGRAMMING AND STRUCTURING CMO’S

9(2) = max{65 + g(0) = 65,30 + g(1) = 60} = 65 add item 1.
9(3) = max{65 + g(1) = 95,80 + g(0) = 80,30 + g(2) = 95} = 95 add item 1 or 3.
9(4) = max{65 + g(2) = 130,80 + g(1) = 110,30 + ¢(3) = 125} = 130 add item 1.

9(b) = max{65 + g(3) = 160,80 + g(2) = 145,30 4+ g(4) = 160} = 160 add item 1 or 3.
This gives a maximum of 160, which is gained by adding 2 of item 1 and 1 of item 3.

4.4 A Model for American Options

For a given stock, let Sy denote its price on day k. We can write
Sk = Sk—1+ Xi

where X, is the change in price from day k — 1 to day k. The random walk model for stock
prices assumes that the random variables X}, are independent and identically distributed, and
are also independent of the known initial price Sy. We will also assume that the distribution
F of X}, has a finite mean.

Now consider an American option on this stock. You can buy the stock at a fixed price ¢
on any day between today (day 0) and day N, when the option expires. You do not have to
ever exercise the option, but if you do at a time when the stock price is s, then your profit is
s —c. What strategy maximizes your expected profit?

Let fx(s) denote the maximum expected profit when the stock price is s and the option
has k additional days before expiration. Here the stages are kK = 1,2,... and the state is s.
In contrast to our earlier examples, we do not assume that the state space is finite in this
model. Then fi(s) satisfies the following recursion:

fi(s) = max{s — ¢, / fi—1(s +x)dF(x)}

with the boundary condition
fo(s) = max{s — ¢, 0}.

For the case that we are considering (American options), there is no closed form formula
for fi(s). However dynamic programming can be used to compute a numerical solution. In
the remainder of this section, we use the recursion formula to derive the structure of the
optimal policy.

Exercise 13 Using induction on k, show that fi(s) — s is a nonincreasing function of s.

Solution The fact that fy(s) — s is a nonincreasing function of s follows from the definition
of fo. Assume now fi_1(s)— s is a nonincreasing function of s. Using the recursion equation,
we get

() =5 = maa{=c, [(fior(s +2) = (s + 0)dF (@) + 1}

where p denotes the mean of F'. For any z, the function fy_1(s+x)—(s+x) is a nonincreasing
function of s, by the induction hypothesis. It follows that f(s)—s is a nonincreasing function
of s. End of solution.

4.5. STRUCTURING COLLATERALIZED MORTGAGE OBLIGATIONS 99

The optimal policy for an American option has the following form:

There are nondecreasing numbers s1 < s < ... < s < ... such that, if the current stock
price is s and there are k days until expiration, then one should exercise the option if and
only if s > sg.

Let us prove this result. It follows from the recursion equation that if fi(s) < s — ¢, then
it is optimal to exercise the option when the stock price is s and there remain k& days until
expiration. Indeed this yields fx(s) = s — ¢, which is the maximum possible under the above
assumption. Define

s =min{s: fr(s) =s—c}.
If no s satisfies fi(s) = s — ¢, then si is defined as +o0o. From the exercise above, it follows
that

fe(s) — s < fr(sk) — s = —c
for any s > sg. Therefore it is optimal to exercise the option with k£ days to expiration

whenever s > si. Since fi(s) is nondecreasing in k, it immediatly follows that sy is also
nondecreasing.

A consequence of the above result is that, when p > 0, it is always optimal to wait until
the maturity date to exercise the option (Explain why). The optimal policy described above
becomes nontrivial when p < 0 however.

4.5 Structuring Collateralized Mortgage Obligations

Mortgages represent the largest single sector of the US debt market, surpassing even the
federal government. In 2000, there were over $5 trillion in outstanding mortgages. Because
of the enormous volume of mortgages and the importance of housing in the US economy,
numerous mechanisms have developed to facilitate the provision of credit to this sector. The
predominant method by which this has been accomplished since 1970 is securitization, the
bundling of individual mortgage loans into capital market instruments. In 2000, $2.3 trillion
of mortgage-backed securities were outstanding, an amount comparable to the $2.1 trillion
corporate bond market and $3.4 trillion market in federal government securities.

A mortgage-backed security is a bond backed by a pool of mortgage loans. Principal
and interest payments received from the underlying loans are passed through to the bond-
holders. These securities contain at least one type of embedded option due to the right of
the home buyer to prepay the mortgage loan before maturity. Mortgage-backed securities
were first packaged using the pass-through structure. The pass-through’s essential charac-
teristic is that investors receive a pro rata share of the cash flows that are generated by the
pool of mortgages — interest, scheduled amortization and principal prepayments. Exercise of
mortgage prepayment options has pro rata effects on all investors. The pass-through allows
banks that initiate mortgages to take their fees up front, and sell the mortgages to investors.
One troublesome feature of the pass-through for investors is that the timing and level of the
cash flows are uncertain. Depending on the interest rate environment, mortgage holders may
pre-pay substantial portions of their mortgage in order to re-finance at lower interest rates.

A collateralized mortgage obligation (CMO) is a more sophisticated mortgage-backed
security. The CMO rearranges the cash flows to make them more predictable. This feature

100 CHAPTER 4. DYNAMIC PROGRAMMING AND STRUCTURING CMO’S

makes CMO’s more desirable to investors. The basic idea behind a CMO is to restructure
the cashflows from an underlying mortgage collateral (pool of mortgage loans) into a set
of bonds with different maturities. These two or more series of bonds (called “tranches”)
receive sequential, rather than pro rata, principal pay down. Interest payments are made on
all tranches (except possibly the last tranche, called Z tranche or “accrual” tranche). A two
tranche CMO is a simple example. Assume that there is $100 in mortgages backing two $50
tranches, say tranche A and tranche B. Initially, both tranches receive interest, but principal
payments are used to pay down only the A tranche. For example, if $1 in mortgage scheduled
amortization and prepayments is collected the first month, the balance of the A tranche is
reduced (paid down) by $1. No principal is paid on the B tranche until the A tranche is
fully retired. Then the remaining $50 in mortgage principal pays down the $50 B tranche.
In effect, the A or “fast-pay” tranche has been assigned all of the early mortgage principal
payments (amortization and prepayments) and reaches its maturity sooner than would an
ordinary pass-through security. The B or “slow-pay” tranche has only the later principal
payments and it begins paying down much later than an ordinary pass-through security.

By repackaging the collateral cashflow in this manner, the life and risk characteristics
of the collateral are restructured. The fast-pay tranches are guaranteed to be retired first,
implying that their lives will be less uncertain, although not completely fixed. Even the slow-
pay tranches will have less cashflow uncertainty than the underlying collateral. Therefore the
CMO allows the issuer to target different investor groups more directly than when issuing
pass-through securities. The low maturity (fast-pay) tranches may be appealing to investors
with short horizons while the long maturity bonds (slow-pay) may be attractive to pension
funds and life insurance companies. Each group can find a bond which is better customized
to their particular needs.

A by-product of improving the predictability of the cash flows is being able to structure
tranches of different credit quality from the same mortgage pool. With the payments of a
very large pool of mortgages dedicated to the “fast-pay” tranche, it can be structured to
receive a AAA credit rating even if there is a significant default risk on part of the mortgage
pool. This high credit rating lowers the interest rate that must be paid on this slice of the
CMO. While the credit rating for the early tranches can be very high, the credit quality for
later tranches will necessarily be lower because there is less principal left to be repaid and
therefore there is increased default risk on slow-pay tranches.

Issuers make money by issuing CMO’s because they can pay interest on the tranches
that is lower than the interest payments being made by mortgage holders in the pool. The
mortgage holders pay 10 or 30-year interest rates on the entire outstanding principal, while
some tranches only pay 2, 4, 6 and 8-year interest rates plus an appropriate spread.

The convention in mortgage markets is to price bonds with respect to their weighted
average life (WAL), which is much like duration, i.e.

T
> tp

_ =1

WAL = =
> e

t=1

where p; is the principal payment in period ¢ (¢t =1,...,T).

4.5. STRUCTURING COLLATERALIZED MORTGAGE OBLIGATIONS 101

A bond with a WAL of 3 years will be priced at the 3 year treasury rate plus a spread,
while a bond with a WAL of 7 years will be priced at the 7 year treasury rate plus a spread.
The WAL of the CMO collateral is typically high, implying a high rate for (normal) upward
sloping rate curves. By splitting the collateral into several tranches, some with a low WAL
and some with a high WAL, lower rates are obtained on the fast-pay tranches while higher
rates result for the slow-pay. Overall, the issuer ends up with a better (lower) average rate
on the CMO than on the collateral.

4.5.1 Data

When issuing a CMO, several restrictions apply. First it must be demonstrated that the
collateral can service the payments on the issued CMO tranches under several scenarios.
These scenarios are well defined and standardized, and cover the two extreme cases of full
immediate prepayment of the collateral and no prepayment at all. Second, to price the
tranches, the expected WAL of each tranche must lie within certain bounds. This is again
caused by the market convention, which allows for a slack in pricing the tranches. Thus a
CMO tranche with a WAL between 3 years and 3.44 years is thought of as comparable to a 3
year treasury bond, while one with a WAL between 7 and 7.94 years may be compared to a
7 year treasury bond. The following table contains the payment schedule for a $ 100 Million
pool of 10-year mortgages with 10 % interest. It may be useful to remember that, if the
outstanding principal is @), interest is r and amortization occurs over k years, the scheduled
amortization in the first year is
Qr
(1+r)k—1

Here @ = 100 r = 0.10 and k£ = 10, thus the scheduled amortization in the first year is
6.27. Adding the 10 % interest payment on (), the total payments (interest + scheduled
amortization) are $ 16.27 M per year.

Interest Scheduled Outstanding
Amortization Principal

Period (t) | (It) () (Q)

1 10.00 6.27 93.73

2 9.37 6.90 86.83

3 8.68 7.59 79.24

4 7.92 8.35 70.89

5 7.09 9.19 61.70

6 6.17 10.11 51.59

7 5.16 11.12 40.47

8 4.05 12.22 28.25

9 2.83 13.45 14.80

10 1.48 14.80 0

Total 100.00

102 CHAPTER 4. DYNAMIC PROGRAMMING AND STRUCTURING CMO’S

The above table assumes no prepayment. Next we want to analyze the following scenario:
a conditional prepayment model reflecting the 100 % PSA (Public Securities Association)
industry-standard benchmark. The rate of mortgage prepayments is 1 % in the first year.
Of those mortgages still outstanding, 3 % prepay in the second year. Of those outstanding
in the third year, 5 % prepay. Of those outstanding in year ¢, 6 % prepay in each year ¢t > 4.
For example, in period 1, in addition to the $10 interest payment and the $6.27 amortization
payment, there is a 1 % prepayment on the 93.73 principal remaining after amortization.
That is, there is a $0.9373 prepayment collected during period 1. Thus the actual principal
pay down is P = 6.27 + 0.9373 = 7.2073. The outstanding principal after prepayments is
Q1 = 100 — 7.2073 = 92.7927. In period 2, the interest paid is Iy = 9.279 and the principal
pay down is P, = % = 9.412, etc. Construct the table containing I;, P, and @y to

reflect the above scenario.

Loss multiple and required buffer

In order to achieve a high quality rating, tranches should be able to sustain higher than
expected default rates without compromising payments to the tranche holders. For this
reason, credit ratings are assigned based on how much money is “behind” the current tranche.
That is, how much outstanding principal is left after the current tranche is retired, as a
percentage of the total amount of principal. This is called the “buffer”. Early tranches
receive higher credit ratings since they have greater buffers, which means that the CMO would
have to experience very large default rates before their payments would be compromised. A
tranche with AAA rating must have a buffer equal to six times the expected default rate.
This is referred to as the “loss multiple”. The loss multiples are as follows:

Credit Rating | AAA | AA| A | BBB|BB| B | CCC
Loss Multiple 6 5 | 4 3 2 |15 0

The required buffer is computed by the following formula:
Required Buffer = WAL * Expected Default Rate * Loss Multiple

Based on a 2 % expected default rate assumption, the required buffer to get a AAA rating
for a tranche with a WAL of 2 years is 2 x 0.02 x 6 = 24 %. Construct the table containing
the required buffer as a function of rating and WAL, assuming a 2 % expected default rate.

Coupon Yields and Spreads

Each tranche is priced based on a credit spread to the current treasury rate for a risk-free
bond of that approximate duration. These rates appear in the next table, based on the yields
on U.S. Treasuries as of 2/21/2001. You might want to get more current figures. Spreads on
corporate bonds with similar credit ratings would provide reasonable figures.

4.5. STRUCTURING COLLATERALIZED MORTGAGE OBLIGATIONS 103

Risk-Free Credit Spread in Basis Points
Period (t) Spot AAA[AA| A [|BBB|BB| B | CCC
1 4.74 % 85 | 100 | 115 | 130 | 165 | 220 | 345
2 4.70 % 90 | 105 | 125 | 140 | 190 | 275 | 425
3 4.77 % 95 | 110 | 135 | 150 | 210 | 335 | 500
4 4.83 % 105 | 120 | 145 | 160 | 230 | 380 | 550
5 4.90 % 115 | 135 | 155 | 175 | 250 | 425 | 625
6 4.94 % 125 | 145 | 165 | 185 | 265 | 470 | 700
7 4.98 % 130 | 150 | 175 | 195 | 285 | 515 | 775
8 5.03 % 135 | 160 | 185 | 210 | 310 | 560 | 850
9 5.07 % 140 | 165 | 195 | 220 | 330 | 605 | 925
10 5.11 % 140 | 170 | 200 | 230 | 350 | 650 | 1000

4.5.2 Characteristics of a tranche that starts amortizing in year j and ends
in year ¢

We are going to consider every possible tranche: since there are 10 possible maturities ¢ and
10 possible starting dates j with j < ¢, there are 55 possible tranches. Specifically, tranche
(j,t) starts amortizing at the beginning of year j and ends at the end of year t. From the
structure of principal payments P; that you computed earlier, construct the table containing
WAL, for each possible combination (j,t).

10
P
&7”1_‘1_’“, Then calculate

For each of the 55 possible tranches (j,t), compute the buffer
k

the Loss Multiple from the formula: Required Buffer = WAL * Expec‘cke_d1 Default Rate * Loss
Multiple. Finally construct a table containing the credit rating for each of the 55 tranches.

For each of the 55 tranches, construct a table containing the appropriate coupon rate c;q.
As described earlier, these rates depend on the WAL and credit rating just computed.

Define Zj; to be the present value of the payments on a tranche (j,t). Armed with the
proper coupon rate cj; and a full curve of spot rates r;, Z;; is computed as follows. In each
year k, the payment Cj, for tranche (j,¢) is equal to the coupon rate cj; times the remaining
principal, plus the principal payment made to tranche (j,¢) if it is amortizing in year k. The
present value of C}, is simply equal to (1571“1)“ Now Zj; is obtained by summing the present
values of all the payments going to tranche (7,).

4.5.3 A Dynamic Programming Approach

Based on the above data, we would like to structure a CMO with four sequential tranches A,
B, C, Z. The objective is to maximize the profits from the issuance by choosing the size of
each tranche.

In this section, we present a dynamic programming recursion for solving the problem.

Let t =1,...,10 index the years. The states of the dynamic program will be the years ¢
and the stages will be the number £ of tranches up to year t.

Now that we have the matrix Z;;, we are ready to describe the dynamic programming

104 CHAPTER 4. DYNAMIC PROGRAMMING AND STRUCTURING CMO’S

recursion. Let
fr(t) = Minimum present value of total payments to bondholders in years 1 through t

when the CMO has k tranches up to year t.

Obviously, f1(t) is simply Z14. For k > 2, the value fi(¢) is computed recursively by the
formula:

fu(t) = j:kﬂ?,t-#fk_l(j) + Zj+14)-

For example, for £ = 2 and ¢t = 4, we compute fi(j) + Z;j41,4 for each j = 1,2,3 and we
take the minimum. The power of dynamic programming becomes clear as k increases. For
example, when k = 4, there is no need to compute the minimum of thousands of possible
combinations of 4 tranches. Instead, we use the optimal structure f3(j) already computed in
the previous stage. So the only enumeration is over the size of the last tranche.

f4(10) is the least cost value that we are looking for. However, we do not yet have the
actual solution that produces this least cost. To find it, we need to backtrack from the last
stage and identify how the minimum was acheived at each stage.

4.5.4 An Integer Programming Approach

We optimize n tranches over T' periods. To formulate the problem of structuring CMO’s as
an integer program, we may use the following 2n7T variables.

pix = the principal payment made to tranche ¢ in period ¢.

I 1 if tranche ¢ is amortized in period ¢
“ 71 0 otherwise.

For example, if n = 4 and T = 10, the z; variables might take the following values,
indicating that tranche 1 is amortized over years 1 and 2, tranche 2 is amortized over years
3, 4 and 5, etc:

t=11 2 3 4 5 6 7 8 9 10
tranches=1 |1 1 0 0 0 0 O O O O
2{0 0 1 1.10 0 00 O

310 0 0 001 1 00 O

410 0 0 00O 0 1 1 1

Next we describe the constraints. We must have

n
sz‘t=Pt fort=1,...,T.

=1

In the above constraints P, are given data.

4.5. STRUCTURING COLLATERALIZED MORTGAGE OBLIGATIONS 105

We must make sure that the tranches are sequential. To guarantee this, we will assign
each P, to only one tranche, the one that is currently amortized.

pit < Pyzy for all 4,t

Zzit =1 for all ¢.
K3
The second constraint insures that only a single tranche is amortized at a time.
We must also enforce that, once a tranche stops being amortized, it cannot resume amor-
tizing later. This is done by introducing new variables y;; that are the sum of z;; variable

over j =1,...,7. Namely, sequencing is enforced by
Yt = Zuet+...+ 2 i=1,...n
Yit = Yit+1 i=1,...n.

In combination, these constraints imply that once a tranche stops being amortized, it cannot
resume amortizing later, and that tranches with lower indices ¢ are amortized before tranches
with higher indices.

Now let us specify constraints on WAL. Let L; be a lower bound on the WAL for tranche
i and U; be an upper bound. Then we have

T T T
LiY pit <Y tpa < Ui Y pi-
t=1 =1 =1

These constraints will be useful later for adjusting the WAL of each tranche to correspond
to its coupon payment.

The payments Cj; to the bondholders for tranche ¢ in period ¢ consist of coupon payments
on the outstanding principal and of principal payments:

T
Cit = ci(Y_ pix) + pit-
k=t
Note that the WAL of tranche 7 is not known yet. Therefore although the ¢;’s are part of the
data, they are guesses based on the expected WAL’s of the corresponding tranches. These
guesses may have to be revised later. Letting R; be any excess cash flow from the collateral
in any period, we have

> Cu+Ri=IL+D
7

The objective is to maximize the excess cash flows from the collateral

ot
= (T4 m)t
where r; denotes the t-year treasury bond rate.

Once the model is set up and solved, we are not done yet. We may need to make
adjustments to the model input data: if tranche ¢ has buffer B; and WAL = k;, then its
coupon rate ¢; should be equal to the k;-year treasury rate plus the spread obtained as

106 CHAPTER 4. DYNAMIC PROGRAMMING AND STRUCTURING CMO’S

computed earlier. If this is not the case, then ¢; needs to be adjusted accordingly and the
program resolved. To speed convergence of this iterative process, one can tighten the ranges
[Li,U;] in the model. Finally, remember that we must ensure that the CMO can be retired
under best and worst case scenarios. These best and worst case constraints can be treated
parametrically and need not be part of the optimization model itself.

Chapter 5

Stochastic Programming and
Asset /Liability Management

5.1 Introduction

The term stochastic program refers to a mathematical program in which some problem data
are random. The underlying mathematical program might be a linear program, an integer
program or a nonlinear program. An important case is that of stochastic linear programs.

A stochastic program with recourse arises when some of the decisions (recourse actions)
can be taken after the outcomes of some (or all) random events have become known. For
example, a two-stage stochastic linear program with recourse can be written as follows:

(1) max cla! + Emax ¢?(w)r?(w)]
subject to
Algt = pl
B?(w)z! +A%(w)r?(w) = b*(w)
z! >0, wz(w) >0

where the first-stage decisions are represented by vector ! and the second-stage decisions
by vector z2(w), which depends on the realization w of a random event. A' and b' define
deterministic constraints on the first-stage decisions x!, whereas A%(w), B%(w) and b?(w)
define stochastic constraints linking the recourse decisions 2%(w) to the first-stage decisions.
The objective function contains a deterministic term c'z! and the expectation of the second-
stage objective c(w)z?(w) taken over all realizations of the random event w.

Note that, once the first-stage decisions z! have been made and the random event w has
been realized, one can compute the optimal second-stage decisions by solving the following
linear program:

flrt,w) =max (w)r?(w)
subject to
A2(w)r?(w) = b?(w) — B?(w)z!
2 (w) > 0.
Let f(z') = E[f(z!,w)] denote the expected value of f(x',w). Then the two-stage
stochastic linear program becomes

107

108CHAPTER 5. STOCHASTIC PROGRAMMING AND ASSET/LIABILITY MANAGEMENT

max clxl + f(z!)
subject to
Alpl — pl
x> 0.

So, if the function f is known, the problem reduces to a nonlinear program. When the
data c?(w), A%(w), B?(w) and b*(w) are described by finite distributions, one can show that f
is piecewise linear and concave. When the data are described by probability densities that are
absolutely continuous and have finite second moments, one can show that f is differentiable
and concave. In both cases, we have a convex program with linear constraints for which
specialized algorithms are available.

Instead of solving a sequence of mathematical programs (an LP and an NLP in the 2-stage
stochastic program example described above), another approach consists in discretizing the
random events and formulating the 2-stage stochastic program as a single large scale LP.
Let wy,ws,...,wxk be the possible realizations of the random event and pj the corresponding
probabilities. Then (1) can be rewritten as

(1) max cta! + 4 pec? (wi)a® (wr)
subject to
Algl —
B?(wp)zt +A%(wp)z?(wr) = B2 (wp) fork=1,...K
at 20, 2?(wy) =0

where the first stage decision variables are z! as before but, in the second stage, there are
K different vectors of decision variables #2(wy,) for k = 1,..., K. Note that all the data are
now deterministic. Therefore, the program (1’) is a linear program. Linear programs can be
solved with current software even they have thousands of constraints and variables.

The 2-stage example above can be generalized to a multi-stage stochastic program with
recourse formulated as follows:

(2) max clal + B p[max (2(w?)2?(w?) + ... + Erpr-— [max(c? (w2t (w!))]...)]

subject to
AIIIZ‘I — bl
B2(whHz! +A%2(w?)z?(w?) = b (w?)
B (w?)z*(w?) +A% ()2 (W?) = (W)
BT(wT):ET_l(wT_l) —i—AT(wT)l’T(wT) — bT(wT)
zt >0, 22 (w?) >0, zT(w?) >0
where the first-stage decisions are represented by vector 2! and the stage ¢ decisions by vector
rt(wh), for t = 2,...,T. In the objective, E t|st—1 denotes the conditional expectation of the
state w! of the data process w = (w?,...,w’) at time ¢ given the history of the process up to

time t — 1. The sequence of events is the following:
decide 2! observe w? decide 2%(w?) ... observe w! decide 2T (wT).

Using the first approach presented for the two-stage case, one can reduce multistage
stochastic programs to a nested sequence of nonlinear programs. Computationally, another

5.2. ASSET/LIABILITY MANAGEMENT 109

approach is receiving increasing attention, in the spirit if the second approach presented
above for the two-stage case. It is called the scenario approach: a finite number of possible
realizations of the future outcomes are considered. One can think of the scenarios as a tree
with T levels where, at each stage t = 1,...,7T — 1, the branches correspond to refinements
of w! to w!!. The stochastic program can then be written as a very large linear program as
follows. For t = 2,...,T, let pg, k, ..k denote the conditional probability of outcome k; at
stage ¢ given outcomes ko, ...,k at the previous stages. Then (2) can be written as

K K
(3) max Clxl + Zk;:l [ka (Cigxig +..F ZszTZI [pk2»w:kTC%Q,...,ka%;,...,kT] o)]

subject to
Al:L‘l — bl
2 .1 2 .2 —
Bkz x +§4k¢2 xé?z 3 3 - bkz
Bkz]C3 wkz +A1€2 k3 xkz]C3 = ka k3

T T-1 T T _ 3T

L) Bkz,...,kkag,...,kT_l +Ak2,...§£€T"Ek}2,...,k5T - bk}g,m,k:T

- >0, T, >0, Thy ko >0

where B}tC2 ..k, denotes the realization of the matrix B!(w) when outcome ko occurs followed

by outcome k3 etc ... followed by outcome k;. The matrices A’,t%m’k and vectors b’;{;%m’kt are

t

similarly defined. There is a constraint B} ' + A7 a7 = by, for every ky = 1,..., Ky and,
more generally, for t = 2,...,T, there is a constraint B,ﬁj2 ktx',i;l kpq T Af62 ktmfcz ok =
b’}CQ ke for every ko = 1,..., Ko, ..., ke = 1,..., K;. It should be clear from this construction

that (3) is a very large scale linear program. For example, for a problem with 10 stages and
a binary tree, there are 1024 scenarios and therefore (3) has several thousand constraints and
variables. Modern commercial codes can handle such large linear programs, but a moderate
increase in the number of stages or in the number of branches at each stage could make (3)
too large to solve.

5.2 Asset/Liability Management

How should a financial institution manage its assets? A static mean-variance model fails to
incorporate the multiperiod nature of the liabilities faced by the company. Furthermore, it
equally penalizes returns above the mean and shortfalls. A multiperiod model that emphasizes
the need to meet liabilities in each period seems more appropriate. The dedicated bond
portfolio example (Project 1) was in this vein. However, the deterministic nature of the
formulation misses a key aspect of the problem, namely that the liabilities and asset returns
usually have a random component. Multistage stochastic programming addresses these issues.

Let L; be the liability of the company in year ¢t for t = 1,...,7T. The L;’s are random with
known distributions. Given these liabilities, which assets (and in which quantities) should
the company hold each year to maximize its expected wealth in year T'? The assets may be
US stocks, foreign stocks, real estate, bonds, etc. Let R;; denote the return on asset ¢ in year
t. The R;’s are random with known distributions. The decision variables are:

x; = market value of investment in asset i in year t.

110CHAPTER 5. STOCHASTIC PROGRAMMING AND ASSET/LIABILITY MANAGEMENT

The decisions z; in year t are made after the random values L; and R; have been realized,
i.e. after the values of L; and R;; are known with certainty. Thus the decision problem is
multistage, stochastic, with recourse. The stochastic program can be written as follows.

max E[}; zir]
subject to
asset accumulation: Y, (14 Ry)xip—1 — > ;24 = Ly fort=1,...,T
x> 0.

The constraint says that the surplus left after liability L; is covered will be invested as
follows: x; invested in asset ¢. The objective selected in the above model was to maximize the
expected wealth at the end of the planning horizon. In practice, one might have a different
objective. In some cases, minimizing Value at Risk (VaR) might be more appropriate. We
have seen in Section 2.11 how one can sometimes linearize the VaR objective by introducing
new variables. Other priorities may dictate other objective functions.

To address the issue of the most appropriate objective function, one must understand the
role of liabilities. We consider the case of a japanese insurance company, the Yasuda Fire
and Marine Insurance Co, Ldt. In this case the liabilities are mainly savings-oriented policies
issued by the company. Each new policy sold represents a deposit, or inflow of funds. Interest
is periodically credited to the policy until maturity, typically three to five years, at which time
the principal amount plus credited interest is refunded to the policyholder. The crediting rate
is typically adjusted each year in relation to a market index like the prime rate. Therefore,
we cannot say with certainty what future liabilities will be. Insurance business regulations
stipulate that interest credited to some policies be earned from investment interest income,
not capital gains. So, in addition to ensuring that the maturity cash flows are met, the firm
must seek to avoid interim shortfalls in interest income earned versus interest credited in any
period. In fact, it is the risk of not earning adequate interest income quarter by quarter that
the decision makers view as the primary component of risk at Yasuda.

The problem is to determine the optimal allocation of the deposited funds into several
asset categories: cash, fixed rate and floating rate loans, bonds, equities, real estate and other
assets. Since we can revise the portfolio allocations over time, the decision we make is not
just among allocations today but among allocation strategies over time. A realistic dynamic
asset/liability model must also account for the payment of taxes. This is made possible by
distinguishing between income return and price return.

A stochastic linear program as in (2) is used to model the problem. The linear program
has uncertainty in many coefficients. This uncertainty is modeled through a finite number of
scenarios. In this fashion, the problem is transformed into a very large scale linear program
of the form (3). The random elements include price and income returns for each asset class,
as well as the rates at which interest is credited to the policies issued by the company.

We now present a multistage stochastic program that was developed for The Yasuda Fire
and Marine Insurance Co., Ldt. Our presentation follows the description of the model as
stated in

D.R. Carino, T. Kent, D.H. Myers, C. Stacy, M. Sylvanus, A.L. Turner, K. Watanabe, W.
Ziemba, The Russell-Yasuda Kasai Model: An Asset/Liability Model for a Japanese Insurance
Company Using Multistage Stochastic Programming, Interfaces 24 (1994) 29-49.

Stages are indexed by t =0,1,...,T.

5.2. ASSET/LIABILITY MANAGEMENT 111

Decision variables of the stochastic program:

z; = market value in asset ¢ at time ¢
w; = Interest income shortfall at ¢ > 1
v; = interest income surplus at ¢t > 1

Random data appearing in the stochastic linear program: For ¢ > 1,

RP; = price return of asset i from ¢t — 1 tot
RI; = income return of asset ¢ from ¢t — 1 to ¢
F;, = deposit inflow from t — 1 to t
P, = principal payout from ¢t — 1 to ¢

I; = interest payout from ¢t —1tot
g = rate at which interest is credited to policies from ¢ — 1 to ¢
L; = liability valuation at t

Parametrized function appearing in the objective:
¢ = piecewise linear convex cost function

The objective of the model is to allocate funds among available assets to maximize ex-
pected wealth at the end of the planning horizon T less expected penalized shortfalls accu-
mulated through the planning horizon.

(4) max B[z — iy cr(wy)]
subject to
asset accumulation: Y, xy — >, (1 4+ RPy + Rly)xi—1 = F,— P, -1 fort=1,...,T
income shortfall: YiRLixiy—1 +w—v= gLy fort=1,...,T
l’z‘tZO; thO; UtZO-

Liability balances and cash flows are computed so as to satisfy the liability accumulation
relations.

Lt = (1+gt)Lt—1+Ft—Pt—It for t > 1.

The stochastic linear program (4) is converted into a large linear program using a finite
number of scenarios to deal with the random elements in the data. Creation of scenario
inputs is made in stages using a tree. The tree structure can be described by the number
of branches at each stage. For example, a 1-8-4-4-2-1 tree has 256 scenarios. Stage t = 0 is
the initial stage. Stage ¢ = 1 may be chosen to be the end of Quarter 1 and has 8 different
scenarios in this example. Stage ¢ = 2 may be chosen to be the end of Year 1, with each of the
previous scenarios giving rise to 4 new scenarios, and so on. For the Yasuda Fire and Marine
Insurance Co., Ldt., a problem with 7 asset classes and 6 stages gives rise to a stochastic
linear program (4) with 12 constraints (other than nonnegativity) and 54 variables. Using 256
scenarios, this stochastic program is converted into a linear program with several thousand
constraints and over 10,000 variables. Solving this model yielded extra income estimated to
about US$ 80 million per year for the company.

112CHAPTER 5. STOCHASTIC PROGRAMMING AND ASSET/LIABILITY MANAGEMENT

5.3 Option Pricing in the Presence of Transaction Costs

A European call option on a stock with maturity 7" and strike price X gives the right to buy
the stock at price X at time T'. The holder of the option will not exercise this option if the
stock has a price S lower than X at time T'. Therefore the value of a European call option is
max (S — X,0). Since S is random, the question of pricing the option correctly is of interest.
The Black-Sholes Option Pricing model relates the price of an option to the volatility of
the stock return. The assumptions are that the market is efficient and that the returns are
lognormal. From the volatility ¢ of the stock return, one can compute the option price for
any strike price X. Conversely, from option prices one can compute the implied volatility
o. For a given stock, options with different strike prices should lead to the same o (if the
assumptions of the Black-Scholes model are correct).

The aim of the model developed in this section is to examine the extent to which market
imperfections can explain the deviation of observed option prices from the Black-Scholes
Option Pricing model. One way to measure the deviation of the Black-Scholes model from
observed option prices is through the “volatility smile”: for a given maturity date, the implied
volatility of a stock computed by the Black-Sholes model from observed option prices at
different strike prices is typically not constant, but instead often exhibits a convex shape as
the strike price increases (the “smile”). One explanation for the deviation is that the smile
occurs because the Black-Scholes model assumes the ability to rebalance portfolios without
costs imposed either by the inability to borrow or due to a bid-ask spread or other trading
costs. Here we will look at the effect of transaction costs on option prices.

The derivation of the Black-Scholes formula is through a replicating portfolio containing
the stock and a riskless bond. If the market is efficient, we should be able to replicate
the option payoff at time T by rebalancing the portfolio between now and time 7', as the
stock price evolves. Rather than work with a continuous time model, we discretize this
process. This discretization is called the binomial approximation to the Black-Scholes Option
Pricing model. In this model, we specify a time period A between trading oportunities and
postulate the behavior of stock and bond prices along successive time periods. The binomial
model assumes that in between trading periods, only two possible stock price movements are
possible.

a) There are N stages in the tree, indexed 0,1..., N, where stage 0 is the root of the tree
and stage N is the last stage. If we divide the maturity date T of an option by N, we

get that the length of a stage is A = T//N.
b) Label the initial node k.

¢) For a node k # kg, let k= be the node that is the immediate predecessor of k.

o,

)
)
) Let S(k) be the stock price at node k and let B(k) be the bond price at node k.
)

We assume that the interest rate is fixed at the annualized rate r so that B(k) =
B(k™)e™.

e

f) Letting o denote the volatility of the stock return, we use the standard parametrization
u=e"VA and d = 1/u. So S(k) = S(k:_)e"\/Z if an uptick occurs from £~ to k and
S(k) = S(k:_)e_"‘/Z if a downtick occurs.

5.3. OPTION PRICING IN THE PRESENCE OF TRANSACTION COSTS 113

g) Let n(k) be the quantity of stocks at node k and let m(k) be the quantity of bonds at
k.

5.3.1 The Standard Problem

In the binomial model, we have dynamically complete markets. This means that by trading
the stock and the bond dynamically, we can replicate the payoffs (and values) from a call
option. The option value is simply the cost of the replicating portfolio, and the replicating
portfolio is self-financing after the first stage. This means that after we initially buy the stock
and the bond, all subsequent trades do not require any additional money and, at the last
stage, we reproduce the payoffs from the call option.

Therefore, we can represent the option pricing problem as the following linear program.
Choose quantities n(k) of the stock, quantities m(k) of the bond at each nonterminal node k
to

(5) min n(ko)S(ko) + m(ko)B(ko)
subject to
rebalancing constraints: n(k™)S(k) + m(k™)B(k) > n(k)S(k) + m(k)B(k)
for every node k # ko
replication constraints: n(k)S(k) + m(k)B(k) > max(S(k) — X,0)
for every terminal node &

where k™ denotes the predecessor of k.
Note that we do not impose nonnegativity constraints since we will typically have a short
position in the stock or bond.

Exercise: Collect data on 4 or 5 call options on a nondividend paying stock for the
nearest maturity (but at least one month). Calculate the implied volatility for each option.
Solve the standard problem (5) when the number of stages is 7 using the implied volatility
of the at-the-money option to construct the tree.

5.3.2 Transaction Costs

To model transaction costs, we consider the simplest case where there are no costs of trading
at the initial and terminal nodes, but there is a bid-ask spread on stocks at other nodes. So
assume that if you buy a stock at node k, you pay S(k)(1 + 6) while if you sell a stock, you
receive S(k)(1 — 6). This means that the rebalancing constraint becomes

n(k)S(k) +m(k™)B(k) > n(k)S(k) +m(k)B(k) + [n(k) — n(k™)|0S (k).

There is an absolute value in this constraint. So it is not a linear constraint. However it
can be linearized as follows. Define two nonnegative variables:

x(k) = number of stocks bought at node k, and
y(k) = number of stocks sold at node k.

The rebalancing constraint now becomes:

114CHAPTER 5. STOCHASTIC PROGRAMMING AND ASSET/LIABILITY MANAGEMENT

n(k™)S(k) + m(k™)B(k) > n(k)S(k) + m(k)B(k) + (x(k) + y(k))0S(k)

Note that this constraint leaves the possibility of simultaneously buying and selling stocks
at the same node. But obviously this cannot improve the objective function that we minimize
in (5), so we do not need to impose a constraint to prevent it.

The modified formulation is:

(6) min n(ko)S(ko) + m(ko)B(ko)
subject to
rebalancing constraints: n(k™)S(k) + m(k™)B(k) > n(k)S(k) +m(k)B(k)
+(z(k) +y(k))0S(k) for every node k # ko
(k) —n(k™) =z(k) —y(k) for every node k # ko

replication constraints: n(k)S(k) +m(k)B(k) > max(S(k) — X,0)

e

)

3

S}

r every terminal node k
nonnegativity: xz(k) >0, y(k) >0 for every node k # k.

Exercise: Repeat the exercise in Section 5.3.1 allowing for transaction costs, with differ-
ent values of 6, to see if the volatility smile can be explained by transaction costs. Specifically,
given a value for o and for 6, calculate option prices and see how they match up to observed
prices.

5.4 Synthetic Options

An important issue in portfolio selection is the potential decline of the portfolio value below
some critical limit. How can we control the risk of downside losses? A possible answer is to
create a payoff structure similar to a European call option.

While one may be able to construct a diversified portfolio well suited for a corporate
investor, there may simply be no option market available when it comes to options on this
portfolio. One solution for investors may be to use index options. However exchange-traded
options with sufficient liquidity are limited to maturities of about three months. This makes
the cost of long-term protection expensive, requiring the purchase of a series of high priced
short-term options. For large institutional or corporate investors, a cheaper solution is to
synthetize the desired payoff structure using available resources. This is called a “synthetic
option strategy”.

The model is based on the following data.

Wy = investor’s initial wealth
T = planning horizon
r = riskless rate of return for one period
ri = rate of return for asset i at time ¢
9 = transaction cost for purchases and sales of asset i at time ¢.

The 7{’s are random, but we know their distributions.

The variables used in the model are the following.

5.4. SYNTHETIC OPTIONS 115

2} = amount allocated to asset i at time ¢

A% = amount of asset i bought at time ¢

D! = amount of asset i sold at time ¢

oy = amount allocated to riskless asset at time ¢.

We formulate a stochastic program that produces the desired payoff at the end of the
planning horizon 7', much in the flavor of the stochastic programs developed in the previous
two sections. Let us first discuss the constraints.

The initial portfolio is

a0+ xh + .. 42l = W

The portfolio at time ¢ is
a :wi_lerz + AL -D! fort=1,...,T

n n
ar =o€ — Z(l + 0 AL + Z(l -0)D: fort=1,...,T.

i=1 i=1
Note that, in the equation defining % above, the term e"t is the random return of asset i at
time t.

One can also impose upper bounds on the proportion of any risky asset in the portfolio:
. n .
0 <zp <mylax + Zm{),
j=1

where m; is chosen by the investor.
The value of the portfolio at the end of the planning horizon is:

n .
v=are’ +) (1 - 07k e,

i=1
where the summation term is the value of the risky assets at time 7.

To construct the desired synthetic option, we split v into the riskless value of the portfolio
R and a surplus z > 0 which depends on random events. Using a scenario approach to the
stochastic program, R is the worst-case payoff over all the scenarios. The surplus z is a
random variable that depends on the scenario. Thus

v=R+z
z > 0.
The objective function of the stochastic program is
max F(z) + uR

where ;1 > 1 is the risk aversion of the investor.
When p = 1, the objective is to maximize expected return.

116CHAPTER 5. STOCHASTIC PROGRAMMING AND ASSET/LIABILITY MANAGEMENT

When g is very large, the objective is to maximize “riskless profit” as we defined it in
Chapter 1 (Section 1.4.1).

As an example, consider an investor with initial wealth Wy = 1 who wants to construct a
portfolio comprising one risky asset and one riskless asset using the “synthetic option” model
described above. We write the model for a two-period planning horizon, i.e. T = 2. The
rate of return on the riskless asset is r per period. For the risky asset, the rate of return is
r{ with probability .5 and 7 with the same probability at time ¢ = 1. Similarly, the rate of
return of the risky asset is r5 with probability .5 and r; with the same probability at time
t = 2. The transaction cost for purchases and sales of the risky asset is 6.

There are 4 scenarios in this example, each occuring with probability .25, which we can
represent by a binary tree. The initial node will be denoted by 0, the up node from it by 1
and the down node by 2. Similarly the up node from node 1 will be denoted by 3, the down
node by 4, and the successors of 2 by 5 and 6 respectively. Let z;, a; denote the amount of
risky asset and of riskless asset respectively in the portfolio at node ¢ of this binary tree. R
is the riskless value of the portfolio and z; is the surplus at node 7. The linear program is:

max .2bz3 + .2bz4 + .2525 + .2526 + uR
subject to
initial portfolio: ag+z9=1
rebalancing constraints: x; = :L'oe’”;r + A —
a1 = ape” — (1 + 9)141 + (1 — (9)D1
To = fL’o@rl— + Ay — Do
ag =ope” — (1+6)As+ (1 —0)Do
payoff: 23+ R=aje” + (1 — Q)xle’"+
z4+ R=age" + (1 — Q)xle
25 + R = age” + (1 — 0)xge”
26+ R = age” + (1 — 9).’1126
nonnegativity: ay,x;, 2; > 0.

Example: An interesting paper discussing synthetic options is the paper of Y. Zhao and W.T.
Ziemba entitled “A stochastic programming model using an endogenously determined worst
case risk measure for dynamic asset allocation” published in Mathematical Programming B 89
(2001) pages 293-309. Zhao and Ziemba apply the synthetic option model to an example with
3 assets (cash, bonds and stocks) and 4 periods (a one-year horizon with quarterly portfolio
reviews). The quaterly return on cash is constant at p = 0.0095. For stocks and bonds, the
expected logarithmic rates of returns are s = 0.04 and b = 0.019 respectively. Transaction
costs are 0.5% for stocks and 0.1% for bonds. The scenarios needed in the stochastic program
are generated using an auto regression model which is constructed based on historical data
(quaterly returns from 1985 to 1998; the Salomon Brothers bond index and S&P 500 index
respectively). Specifically, the auto regression model is

sy = 0.037 — 0.193s;—1 + 0.418b;—1 — 0.172s4_5 + 0.517b;_2 + ¢
by = 0.007 — 0.140s4—1 + 0.175b;—1 — 0.023s,_9 + 0.122b;_9 + 14

where the pair (e, ;) characterizes uncertainty. The scenarios are generated by selecting 20
pairs of (es,7¢) to estimate the empirical distribution of one period uncertainty. In this way,

5.4. SYNTHETIC OPTIONS 117

a scenario tree with 160,000 (= 20 x 20 x 20 x 20) paths describing possible outcomes of asset
returns is generated.

The resulting large scale linear program is solved. We discuss the results obtained when
this linear program is solved for a risk aversion of y = 2.5: The value of the terminal portfolio
is always at least 4.6% more than the initial portfolio wealth and the distribution of terminal
portfolio values is skewed to larger values because of dynamic downside risk control. The
expected return is 16.33% and the volatility is 7.2%. It is interesting to compare these values
with those obtained from a static Markowitz model: The expected return is 15.4% for the
same volatility but no minimum return is guaranteed! In fact, in some scenarios, the value
of the Markowitz portfolio is 5% less at the end of the one-year horizon than it was at the
beginning.

It is also interesting to look at an example of a typical portfolio (one of the 160,000 paths)
generated by the synthetic option model (the linear program was set up with an upper bound
of 70 % placed on the fraction of stocks or bonds in the portfolio):

Cash Stocks Bonds | Portfolio value
100
Periodl | 12% 18% 0% 103
2 41% 59% 107
3 0% 30% 112
41 30% 0% 114

Exercise: Develop a synthetic option model in the spirit of that used by Zhao and
Ziemba, adapted to the size limitation of your linear programming solver. Compare with a
static model.

