Name:

MATH 520 Linear Algebra Fall 2002-2003 Final Examination 8.1.2003

There are 10 questions with equal weight, and the weights add up to 40. Prove or disprove means: either you choose to give a proof or you give a counterexample. Please answer the questions in the space provided.

1. Let U be the subspace of \mathbb{R}^5 defined by

$$U = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbf{R}^5 : x_1 = 3x_2 \text{ and } x_3 = 7x_4\}.$$

Find a basis of U.

2. Prove or disprove:

There exists a basis (p_0, p_1, p_2, p_3) of $\mathcal{P}_3(\mathbf{F})$ such that none of the polynomials p_0, p_1, p_2, p_3 has degree 2.

3. Give an example of a function $f: \mathbf{R}^2 \mapsto \mathbf{R}$ such that

$$f(av) = af(v)$$

for all $a \in \mathbf{R}$ and all $v \in \mathbf{R}^2$ but f is linear.

4. T is a linear map from \mathbf{F}^4 to \mathbf{F}^2 such that

null
$$T = \{(x_1, x_2, x_3, x_4) \in \mathbf{F}^4 : x_1 = 5x_2 \text{ and } x_3 = 7x_4\}.$$

Prove or disprove:

T is surjective.

5. Suppose that $S, T \in \mathcal{L}(V)$ are such that ST = TS. Prove or disprove null $(T - \lambda I)$ is invariant under S for every $\lambda \in \mathbf{F}$.

6. Suppose that $T \in \mathcal{L}(V)$ is invertible and $\lambda \in \mathbf{F} \setminus \{0\}$. Prove or disprove λ is an eigenvalue of T if and only if $\frac{1}{\lambda}$ is an eigenvalue of T^{-1} .

7. Prove or disprove:

There is an inner product on ${\bf R}^2$ such that the associated norm is given by

$$||(x_1, x_2)|| = |x_1| + |x_2|$$

for all $(x_1, x_2) \in \mathbf{R}^2$.

8. Suppose that $T \in \mathcal{L}(V)$ and U is a subspace of V. Prove or disprove U is invariant under T if and only if $P_UTP_U = TP_U$.

9. Prove or disprove:

If
$$T \in \mathcal{L}(V)$$
 is normal, then

range
$$T = \text{range } T^*$$
.

10. Does there exist a self-adjoint operator $T \in \mathcal{L}(\mathbf{R}^3)$ such that T(1,2,3)=(0,0,0) and T(2,5,7)=(2,5,7)?