MATH 520 Linear Algebra Fall 2005 HW III

6.10.2005, due: 13.10.2005

An affine map T from \mathbb{R}^n to \mathbb{R}^m is a map of the form Tx = Sx + a, where a is a fixed vector in \mathbb{R}^m and S is a linear map from \mathbb{R}^n to \mathbb{R}^m .

1. Prove or disprove: A map T from \mathbf{R}^n to \mathbf{R}^m is affine if and only if for each $\lambda \in \mathbf{R}$ and each pair of points x_1 and x_2 in \mathbf{R}^n

$$T(\lambda x_2 + (1 - \lambda)x_1) = \lambda Tx_2 + (1 - \lambda)Tx_1.$$

A subset C of \mathbf{R}^n is said to be *convex* if $(1 - \lambda)x + \lambda y \in C$ whenever $x \in C$, $y \in C$ and $0 < \lambda < 1$.

2. Let TC denote the image of a convex set C under a map T. Prove or disprove: TC is convex if T is an affine map.

A subset K of \mathbf{R}^n is said to be a cone if it is closed under positive scalar multiplication, i.e., $\lambda x \in K$ whenever $x \in K$ and $\lambda > 0$. It is called a *convex cone* if it is also convex.

3. Prove or disprove: A subset K of \mathbf{R}^n is a convex cone if and only if it is closed under addition and positive scalar multiplication.

If A is $m \times n$ matrix, then define

$$Im(L_A) = \{Ax | x \in \mathbf{R}^n\}.$$

 $Im(L_A)$ is a subspace of \mathbb{R}^n spanned by the columns A. The dimension of $Im(L_A)$ is called the column rank of A and is denoted $r_c(A)$. Let B be a $n \times p$ matrix and consider the linear maps $L_A v = A v$ and $L_{AB} v = A B v$ for $v \in \mathbb{R}^n$. The dimension of $Im(L_{AB})$ is denoted $r_c(AB)$.

4. Prove or disprove: $r_c(AB) \le r_c(A)$ and $r_c(AB) \le r_c(B)$.