15.053 To accompany lecture on February 7

- Some additional Linear Programs (not covered in lecture)
 - Airplane Revenue Management
 - Tomotherapy

1

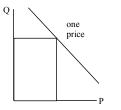
An Airline Revenue Management Problem

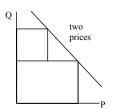
Background: Deregulation occurred in 1978 Prior to Deregulation

- Carriers only allowed to fly certain routes. Hence airlines such as Northwest, Eastern, Southwest, etc.
- Fares determined by Civil Aeronautics Board (CAB) based on mileage and other costs --- (CAB no longer exists)

Post Deregulation

- Any carrier can fly anywhere
- Fares determined by carrier (and the market)


2


Special Features of Airline Economics

- Huge sunk and fixed costs
 - Purchase of airplanes
 - Gate facilities
- Fuel and crew costs
- Low variable costs per passenger
 - \$10/passenger or less on most flights
- Strong economically competitive environment
 - Near-perfect information and negligible cost of information
 - Symmetric information
- No inventories of "product"
 - An empty seat has lost revenue forever: highly perishable inventory.

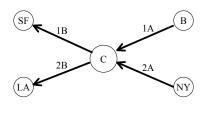
3

Multiple fare classes: a monopolist's perspective

The two fare model presumes that customers are willing to pay the higher price, even if the lower price is available. How did airlines achieve this?

4

Two Complexities in Revenue Management

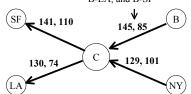

- . Complexities due to use of hubs.
 - Many customers transfer airplanes at a hub
 - Hubs permit many more "itineraries" to be flown
- Complexities due to uncertainties
 - Typically the less expensive Q fares are sold in advance of the more expensive Y fares.
 - How many tickets should be reserved for Y fares
- Today: We will focus on the complexities due to hubs, and will consider a very simple example.

Four Flights from East-West Airlines

Flight #	Depart	Arrive	_
1A	Boston 8 AM	Chicago 10:15 AM	_
1B	Chicago 10:45 AM	San Francisco 12:15 PM	Both planes have a seating
2A	New York 7:45 AM	Chicago 10:15 AM	capacity of 200
2B	Chicago 10:45 AM	Los Angeles 12:15 PM	

Several passenger itineraries can be determined from these flights. For example, a passenger can fly from Boston to Chicago, and another passenger can fly from Boston to LA.

A Diagram Showing the East-West Flights



Fares and Demand for Itineraries

Itinerary	Q-class fare	Y-class fare	
	and demand	and demand	
В-С	\$200 25	\$230 20	
B-SF	\$320 55	\$420 40	
B-LA	\$400 65	\$490 25	
NY-C	\$250 24	\$290 16	
NY-SF	\$410 65	\$550 50	
NY-LA	\$450 40	\$550 35	
C-SF	\$200 21	\$230 20	
C-LA	\$250 25	\$300 14	

Number of seats allocated if everyone flies

Includes demand from B-C, B-LA, and B-SF

Q-demand, Y-demand

Seat capacity: 200 per flight

Y-fares are higher

Formulation as a Linear Program

- What are the decision variables?
- What is the objective:
- What are the constraints?

10

An Abstracted version of the LP

- . Let F be the set of flights
- Let C be the set of itineraries/classes
 e.g., <NY-C-SF 7:45-12:15, Q-class> ∈ C
- r_i = revenue from j ∈ C
- $d_i = demand for j \in C$
- let C(f) = subset of C containing flight f
- c_f = capacity of flight f

Work with your partner to formulate the LP

The Optimal Solution

Itinerary	Q-cla	Q-class sold		Y-class sold	
	and	and demand		and demand	
В-С	25	25	20	20	
B-SF	25	55	40	40	
B-LA	65	65	25	25	
NY-C	19	24	16	16	
NY-SF	44	65	50	50	
NY-LA	36	40	35	35	
C-SF	21	21	20	20	
C-LA	25	25	14	14	

Number of seats allocated in the optimal solution Includes demand from B-C, B-LA, and B-SF 90, 110 126, 74 C 99, 101 NY Q-demand, Y-demand Seat capacity: 200 per flight Y-fares are higher 13

Robert L. Crandall, Chairman, President, and CEO of AMR

I believe that yield management is the single most important technical development in transportation management since we entered the era of airline deregulation in 1979....

The development of American Airline's yield-management system has been long and sometimes difficult, but this investment has paid off. We estimate that yield management has generated \$1.4 billion in incremental revenue in the last three years alone. This is not a one-time benefit. We expect it to generate at least \$500 million annually for the foreseeable future.

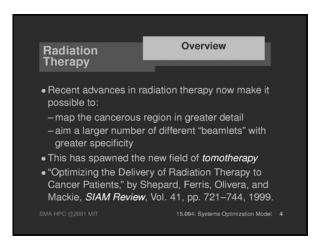
14

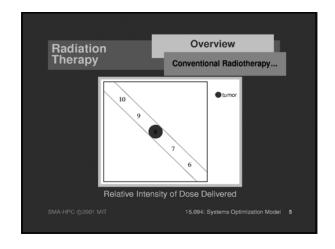
Math Programming and Radiation Therapy

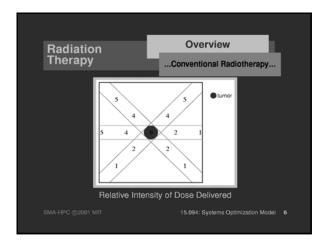
- Based on notes developed by Rob Freund (with help from Peng Sun)
- Lecture notes from 15.094

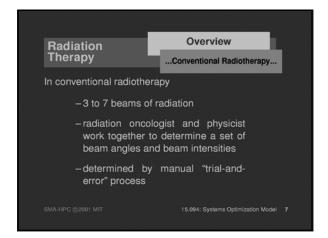
15

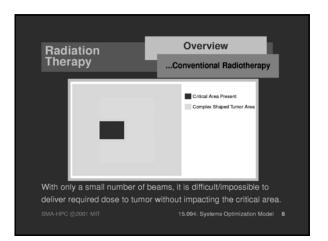
Radiation Therapy

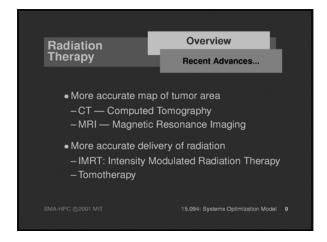

• High doses of radiation (energy/unit mass) can kill cells and/or prevent them from growing and dividing

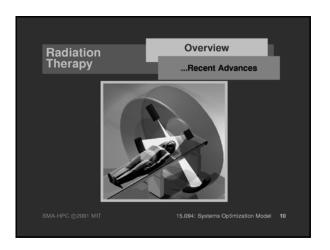

- true for cancer cells and normal cells

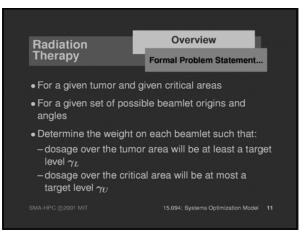

• Radiation is attractive because the repair mechanisms for cancer cells is less efficient than for normal cells

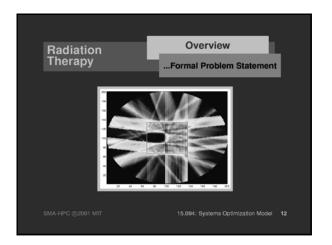

MA-HPC © 2001 MIT

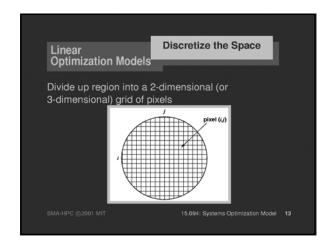

15.094: Systems Optimization Model 3

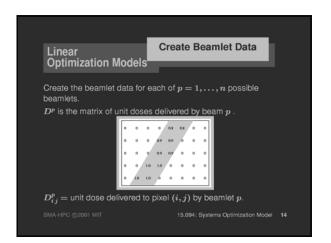


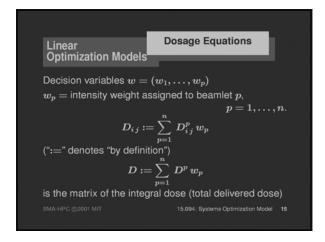


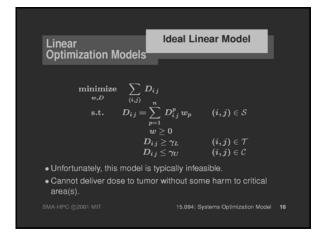




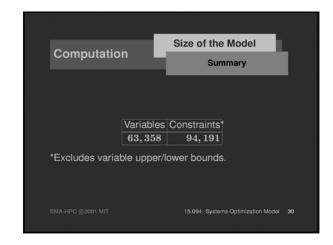


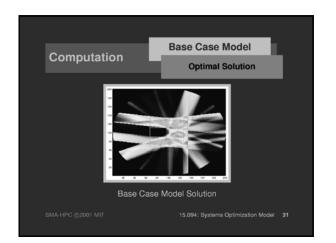


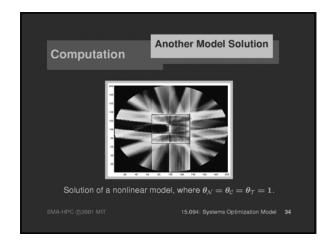


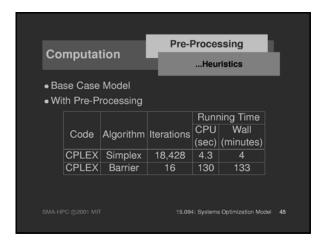









Opportunities for enhancements


- Use penalties: e.g., $D_{ij} \ge \gamma_L y_{ij}$ and then penalize y in the objective.
- Consider non-linear penalties (e.g., quadratic)
- Consider costs that depend on damage rather than on radiation
- Develop target doses and penalize deviation from the target

Summary

- Revenue management, tomotherapy
- Models are rarely perfect. One balances the quality of the model with the needs for the situation.
- Some techniques used: penalties, reformulations.