Name:

MATH 520 Linear Algebra Fall 2002 Examination III 18.12.2002

There are 7 questions and the weights add up to 20. Prove or disprove means: either you choose to give a proof or you give a counterexample. Please answer the questions in the space provided.

1.[1 point] Prove or disprove the following statement:

If V is a real inner product space, then for arbitrary non-zero vectors v and w in V, we have

$$-1 \le \frac{\langle u, v \rangle}{\|u\| \|v\|} \le 1.$$

2.[3 points] Find the closest vector to (2,1,2,-1,-2) in the subspace spanned by (1,1,0,0,-1), (1,-1,1,0,0), (0,0,0,1,0).

3. [3 points]

Prove or disprove the following statement:

If $\{v_1, \ldots, v_n\}$ is an **orthogonal** set of vectors of an inner product space V, then for each $v \in V$ we have

$$||v|| \ge \sqrt{\sum_{k=1}^{n} \frac{\langle v, v_k \rangle^2}{\langle v_k, v_k \rangle}}.$$

Equality holds iff

$$v = \sum_{k=1}^{n} \frac{\langle v, v_k \rangle^2}{\langle v_k, v_k \rangle} v_k.$$

4. [2 points] Find the orthogonal projection of the function e^x on the subspace of $C[-\pi,\pi]$ (with inner product $\langle f,g\rangle=\int_{-\pi}^{\pi}f(x)\bar{g}(x)dx$) generated by $\cos x$ and $\sin x$. (Recall that $\sinh x=\frac{e^x-e^{-x}}{2}$).

5.[4 points] We are given the vector space of continuous functions on [-1,1], the space C[-1,1] with inner product $\langle f,g\rangle=\int_{-1}^1 f(x)\bar{g}(x)dx$. Let $V_+=\{f\in C[-1,1]:f(x)=f(-x)\}$ be the subspace of even functions and $V_-=\{f\in C[-1,1]:f(x)=-f(-x)\}$ be the subspace of odd functions. Prove or disprove:

$$V = V_+ \oplus V_-$$
.

6.[4 points] Consider a **complex** vector space V of dimension n. You are given two operators F and G on V such that

$$GF - FG = \alpha F$$

where α is a complex nonzero number. Let v be an eigenvector of G corresponding to eigenvalue λ .

(a) Show (using induction argument) that for all integer k (k = 1, ...) we have

$$GF^k(v) = (\lambda + \alpha k)F^k(v)$$

(b) Deduce from (a) the existence of an integer $k\in\{0,1,\ldots,n\}$ such that $F^k(v)=0$ and that F is not injective.

7.[3 points] We are given n real nonzero numbers b_1, \ldots, b_n and the $n \times n$ matrix A where the (i, j) entry a_{ij} is given by

$$a_{ij} = b_i b_j$$
.

Therefore, A is the matrix representation of an operator T of a real n-dimensional vector space V in a given basis $\{e_1, \ldots, e_n\}$.

Using the definition of an eigenvalue and eigenvector, show that $\lambda_1 = 0$ is an eigenvalue of T and that the eigenspace E_1 associated with λ_1 is a subspace of dimension n-1 that you should determine explicitly.