
1

15.053 Tuesday, April 9

Branch and Bound

Handouts: Lecture Notes

2

Overview of Techniques for Solving
Integer Programs

Enumeration Techniques
– Complete Enumeration

• list all “solutions” and choose the best
– Branch and Bound

• Implicitly search all solutions, but cleverly eliminate the vast
majority before they are even searched

– Implicit Enumeration
• Branch and Bound applied to binary variables

Cutting Plane Techniques
– Use LP to solve integer programs by adding constraints to

eliminate the fractional solutions.

3

Investment 1 2 3 4 5 6

Cash
Required
(1000s)

 $5

 $7

 $4

 $3

 $4

 $6

NPV
added
(1000s)

 $16

 $22

 $12

 $8

$11

$19

Capital Budgeting Example
Investment budget = $14,000

maximize 16x1 + 22x2 + 12x3 + 8x4 +11x5 + 19x6

subject to 5x1 + 7x2 + 4x3 + 3x4 +4x5 + 6x6 ≤ 14

xj binary for j = 1 to 6
4

Complete Enumeration

Systematically considers all possible
values of the decision variables.
– If there are n binary variables, there are 2n

different ways.
Usual idea: iteratively break the problem
in two. At the first iteration, we consider
separately the case that x1 = 0 and x1 = 1.

5

An Enumeration Tree

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

Original
problem

6

On complete enumeration

Suppose that we could evaluate 1 billion
solutions per second.
Let n = number of binary variables
Solutions times
– n = 30, 1 second
– n = 40, 17 minutes
– n = 50 11.6 days
– n = 60 31 years

7

On complete enumeration

Suppose that we could evaluate 1 trillion
solutions per second, and instantaneously
eliminate 99.9999999% of all solutions as
not worth considering
Let n = number of binary variables
Solutions times
– n = 70, 1 second
– n = 80, 17 minutes
– n = 90 11.6 days
– n = 100 31 years

8

Branch and Bound

The essential idea: search the
enumeration tree, but at each node

1. Solve the linear program at the node
2. Eliminate the subtree (fathom it) if

1. The solution is integer (there is no need to go
further) or

2. The best solution in the subtree cannot be as
good as the best available solution (the
incumbent) or

3. There is no feasible solution

9

Branch and Bound

1 44 3/7

Solution at node 1:

x1 =1 x2 = 3/7 x3 = x4 = x5 = 0 x6 =1 z = 44 3/7

Node 1 is the
original LP
Relaxation

maximize 16x1 + 22x2 + 12x3 + 8x4 +11x5 + 19x6

subject to 5x1 + 7x2 + 4x3 + 3x4 +4x5 + 6x6 ≤ 14

0 ≤ xj ≤ 1 for j = 1 to 6

The IP cannot have value higher than 44 3/7.
10

Branch and Bound

1

2

x1 = 0

44 3/7

44

Solution at node 2:
x1 = 0 x2 = 1 x3 = 1/4 x4 = x5 = 0 x6 = 1 z = 44

Node 2 is the
original LP
Relaxation plus
the constraint
x1 = 0.

maximize 16x1 + 22x2 + 12x3 + 8x4 +11x5 + 19x6

subject to 5x1 + 7x2 + 4x3 + 3x4 +4x5 + 6x6 ≤ 14

0 ≤ xj ≤ 1 for j = 1 to 6, x1 = 0

11

Branch and Bound

1

2

x1 = 0

44 3/7

44

Node 3 is the
original LP
Relaxation plus
the constraint
x1 = 1.

3

x1 = 1

The solution at node 1 was

x1 =1 x2 = 3/7 x3 = x4 = x5 = 0 x6 =1 z = 44 3/7

Note: it was the best solution with no constraint on x1.
So, it is also the solution for node 3. (If you add a
constraint, and the old optimal solution is feasible, then
it is still optimal.)

44 3/7

12

Branch and Bound

1

2 3

x1 = 0 x1 = 1

44 3/7

44 44 3/7

Solution at node 4: 0 0 1 0 1 1 z = 42

4

x2 = 0

42

Our first incumbent solution!
No further searching from node 4 because
there cannot be a better integer solution.

Node 4 is the
original LP
Relaxation plus
the constraints
x1 = 0, x2 = 0.

4

13

Branch and Bound

1

2 3

x1 = 0 x1 = 1

44 3/7

44 44 3/7

We next solved the LP’s associated with nodes 5, 6, and 7

4

x2 = 0

42

No new integer solutions were found.

5

x2 = 1

6

x2 = 0

7

x2 = 1

44 44 44 1/3

The
incumbent
solution has
value 42

4

14

Branch and Bound

1

2 3

x1 = 0 x1 = 1

44 3/7

44 44 3/7

We next solved the LP’s associated with nodes 8 -13

4

x2 = 0

42 5

x2 = 1

6

x2 = 0

7

x2 = 1

44 44 44 1/3

The
incumbent
solution has
value 42

8

x3 = 0

9

x3 = 1

10

x3 = 0

11

x3 = 1

12

x3 = 0

13

x3 = 1

43.75 43.5 43.25 43.8 44.3 -Inf.

4

13

15

Summary so far

We have solved 13 different linear
programs so far.
– One integer solution found
– One subtree fathomed (pruned) because the

solution was integer (node 4)
– One subtree fathomed because the solution

was infeasible (node 13)
– No subtrees fathomed because of the bound

16

Branch and Bound
1

2 3

x1 = 0 x1 = 1

44 3/7

44 44 3/7

We next solved the LP’s associated with the next nodes.

4

x2 = 0

42 5

x2 = 1

6

x2 = 0

7

x2 = 1

44 44 44 1/3

The
incumbent
solution has
value 42

8

x3 = 0

9

x3 = 1

10

x3 = 0

11

x3 = 1

12

x3 = 0

13

x3 = 1

43.75 43.5 43.25 43.8 44.3 -Inf.

43.75 42.66

We can fathom the node with z = 42.66. Why?

17

Getting a better bound

The bound at each node is obtained by
solving an LP.
But we know the best integer solution has
an integer objective value.
If the best integer valued solution for a
node is at most 42.66, then we know the
best bound is at most 42.
Other bounds can also be rounded down.

18

Branch and Bound
1

2 3

x1 = 0 x1 = 1

44 3/7

44 44 3/7

4

x2 = 0

42 5

x2 = 1

6

x2 = 0

7

x2 = 1

44 44 44 1/3

The
incumbent
solution has
value 42

8

x3 = 0

9

x3 = 1

10

x3 = 0

11

x3 = 1

12

x3 = 0

13

x3 = 1

43.75 43.5 43.25 43.8 44.3 Inf.

43.75 42.66

19

Branch and Bound
1

2 3

x1 = 0 x1 = 1

44

44 44

4

x2 = 0

42 5

x2 = 1

6

x2 = 0

7

x2 = 1

44 44 44

The
incumbent
solution has
value 42

8

x3 = 0

9

x3 = 1

10

x3 = 0

11

x3 = 1

12

x3 = 0

13

x3 = 1

43 43 43 43 44 Inf

43 42

20

Branch and Bound
1

2 3

x1 = 0 x1 = 1

44

44 44

4

x2 = 0

42 5

x2 = 1

6

x2 = 0

7

x2 = 1

44 44 44

The
incumbent
solution has
value 42

8

x3 = 0

9

x3 = 1

10

x3 = 0

11

x3 = 1

12

x3 = 0

13

x3 = 1

43 43 43 43 44 Inf

43 42 43 42 43 43

We found a new incumbent solution!

x1 = 1, x2 = x3 = 0, x4 = 1, x5 = 0, x6 = 1 z = 43

21

Branch and Bound
1

2 3

x1 = 0 x1 = 1

44

44 44

4

x2 = 0

42 5

x2 = 1

6

x2 = 0

7

x2 = 1

44 44 44

The new
incumbent
solution has
value 43

8

x3 = 0

9

x3 = 1

10

x3 = 0

11

x3 = 1

12

x3 = 0

13

x3 = 1

43 43 43 43 44 Inf

43 42 43 42 43 43

We found a new incumbent solution!

x1 = 1, x2 = x3 = 0, x4 = 1, x5 = 0, x6 = 1 z = 43

8 9 10 11

22

Branch and Bound
1

2 3

x1 = 0 x1 = 1

44

44 44

4

x2 = 0

42 5

x2 = 1

6

x2 = 0

7

x2 = 1

44 44 44

The new
incumbent
solution has
value 43

8

x3 = 0

9

x3 = 1

10

x3 = 0

11

x3 = 1

12

x3 = 0

13

x3 = 1

43 43 43 43 44 Inf

If we had found this incumbent earlier, we could have
saved some searching.

8 9 10 11

23

Finishing Up
1

2 3

x1 = 0 x1 = 1

44

44 44

4

x2 = 0

42 5

x2 = 1

6

x2 = 0

7

x2 = 1

44 44 44

The new
incumbent
solution has
value 43

8

x3 = 0

9

x3 = 1

10

x3 = 0

11

x3 = 1

12

x3 = 0

13

x3 = 1

43 43 43 43 44 Inf8 9 10 11

Inf

Inf

14 15

16 17

44

44

18 19 Inf38 24

Lessons Learned

Branch and Bound can speed up the search
– Only 25 nodes (linear programs) were evaluated
– Other nodes were fathomed

Obtaining a good incumbent earlier can be valuable
– only 19 nodes would have been evaluated.

Solve linear programs faster, because we start with an
excellent or optimal solution
– uses a technique called the dual simplex method

Obtaining better bounds can be valuable.
– We sometimes use properties that are obvious to us, such as

the fact that integer solutions have integer solution values

25

Branch and Bound

Notation:
– z* = optimal integer solution value
– Subdivision: a node of the B&B Tree
– Incumbent: the best solution on hand
– zI: value of the incumbent
– zLP: value of the LP relaxation of the current node
– LIST: the collection of active (not fathomed) nodes
– Children of a node: the two problems created for a

node, e.g., by saying xj = 1 or xj = 0.

Initialization: LIST = {original problem}
Incumbent: = ∅
zI = -∞

26

Branch and Bound Algorithm
INITIALIZE
SELECT:

If LIST = ∅ , then the Incumbent is optimal if it exists, and
the problem is infeasible if no incumbent exists;

else, let S be a subdivision from LIST.
Let xLP be the optimal solution to S
Let zLP = its objective value

CASE 1. zLP = -∞ (the LP is infeasible)
Remove S from LIST (fathom it)
Return to SELECT

27

Branch and Bound Algorithm
INITIALIZE
SELECT:

If LIST = ∅ , then the Incumbent is optimal (if it exists), and
the problem is infeasible if no incumbent exists;

else, let S be a subdivision from LIST.
Let xLP be the optimal solution to S
Let zLP = its objective value

CASE 2. -∞ < zLP <= zI.
That is, the LP is dominated by the incumbent)

Then remove S from LIST (fathom it)
Return to SELECT

28

Branch and Bound Algorithm
INITIALIZE
SELECT:

If LIST = ∅ , then the Incumbent is optimal (if it exists), and
the problem is infeasible if no incumbent exists;

else, let S be a subdivision from LIST.
Let xLP be the optimal solution to S
Let zLP = its objective value

CASE 2. -∞ < zLP <= zI.
That is, the LP is dominated by the incumbent)

Then remove S from LIST (fathom it)
Return to SELECT

29

Branch and Bound Algorithm
INITIALIZE
SELECT:

If LIST = ∅ , then the Incumbent is optimal (if it exists), and
the problem is infeasible if no incumbent exists;

else, let S be a subdivision from LIST.
Let xLP be the optimal solution to S
Let zLP = its objective value

CASE 3. zI < zLP and xLP is integral.
That is, the LP solution is integral and dominates the
incumbent.

Then Incumbent := xLP;
zI := zLP

Remove S from LIST (fathomed by integrality)
Return to SELECT 30

Branch and Bound Algorithm
INITIALIZE
SELECT:

If LIST = ∅ , then the Incumbent is optimal (if it exists), and
the problem is infeasible if no incumbent exists;

else, let S be a subdivision from LIST.
Let xLP be the optimal solution to S
Let zLP = its objective value

CASE 4. zI < zLP and xLP is not integral.
There is not enough information to fathom S

Remove S from LIST
Add the children of S to LIST
Return to SELECT

31

Different Selection Rules are Possible

Rule of Thumb 1: Don’t let LIST get too big (the
solutions must be stored). So, prefer nodes that
are further down in the tree.

Rule of Thumb 2: Pick a node of LIST that is
likely to lead to an improved incumbent.
Sometimes special heuristics are used to come
up with a good incumbent.

32

X X

X X

XXX

XX

X

X

2

1 1

2

3

3

3 3

3 3

3

3

= 0

= 0
= 1

= 0 = 1
= 0 = 1

= 0

= 0 = 1

= 1 X X88 = 1= 0

= 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Branching
One does not have to have the B&B
tree be symmetric, and one does not
select subtrees by considering variables
in order.

Choosing how to
branch so as to
reduce running
time is largely
“art” and based
on experience.

33

Different Branching Rules are Possible

Branching: determining children for a node. There are
many choices.

Rule of thumb 1: if it appears clear that xj = 1 in an optimal
solution, it is often good to branch on xj = 0 vs xj = 1.
– The hope is that a subdivision with xj = 0 can be pruned.

Rule of thumb 2: branching on important variables is
worthwhile
– e.g., in the location problem, branch on the plant location

variables first

34

Different Bounding Techniques are Possible

We use the bound obtained by dropping the
integrality constraints (LP relaxation). There are
other choices.

Key tradeoff for bounds: time to obtain a bound
vs quality of the bound.

If one can obtain a bound much quicker,
sometimes we would be willing to get a bound
that is worse

It usually is worthwhile to get a bound that is
better, so long as it doesn’t take too long (see
next lecture)

35

What if the variables are general
integer variables?

One can choose children as follows:
– child 1: x1 ≤ 3 (or xj ≤ k)
– child 2 x1 ≥ 4 (or xj ≥ k+1)

How would one choose the variable j and
the value k
– A common choice would be to take a fractional

value from xLP. e.g., if x7 = 5.62, then we may
branch on x7 ≤ 5 and x7 ≥ 6.

– Other choices are also possible.
36

Summary

Branch and Bound is the standard way of
solving IPs to optimality.
There is art to making it work well in
practice.
Much of the art is built into state-of-the-art
solvers such as CPLEX.

37

A bad example for implicit
enumeration

maximize 2x1 + 2x2 + 2x3 + . . . + 2x100

subject to 2x1 + 2x2 + 2x3 + . . . + 2x100 ≤ 101
xi ∈ {0,1} for i = 1 to 100.

Why is this a bad example? What would happen
if we used branch and bound, as described
earlier?

