15.053

Tuesday, April 9

• Branch and Bound

Handouts: Lecture Notes

1

Overview of Techniques for Solving Integer Programs

- Enumeration Techniques
 - Complete Enumeration
 - · list all "solutions" and choose the best
 - Branch and Bound
 - Implicitly search all solutions, but cleverly eliminate the vast majority before they are even searched
 - Implicit Enumeration
 - · Branch and Bound applied to binary variables
- Cutting Plane Techniques
 - Use LP to solve integer programs by adding constraints to eliminate the fractional solutions.

2

Capital Budgeting Example

Investment budget = \$14,000

Investment	1	2	3	4	5	6	
Cash Required (1000s)	\$5	\$7	\$4	\$3	\$4	\$6	
NPV added (1000s)	\$16	\$22	\$12	\$8	\$11	\$19	

maximize $16x_1 + 22x_2 + 12x_3 + 8x_4 + 11x_5 + 19x_6$ subject to $5x_1 + 7x_2 + 4x_3 + 3x_4 + 4x_5 + 6x_6 \le 14$ x_i binary for j = 1 to 6

Complete Enumeration

- Systematically considers all possible values of the decision variables.
 - If there are n binary variables, there are 2ⁿ different ways.
- Usual idea: iteratively break the problem in two. At the first iteration, we consider separately the case that x₁ = 0 and x₁ = 1.

4

An Enumeration Tree Original problem $x_1 = 0$ $x_2 = 0$ $x_2 = 1$ $x_3 = 0$ $x_3 = 0$ $x_3 = 0$ $x_4 = 1$ $x_5 = 0$ $x_5 = 1$

On complete enumeration

- Suppose that we could evaluate 1 billion solutions per second.
- Let n = number of binary variables
- Solutions times

- n = 30, 1 second - n = 40, 17 minutes - n = 50 11.6 days - n = 60 31 years

On complete enumeration

- Suppose that we could evaluate 1 trillion solutions per second, and instantaneously eliminate 99.9999999% of all solutions as not worth considering
- Let n = number of binary variables
- Solutions times

- n = 70, 1 second - n = 80, 17 minutes - n = 90 11.6 days - n = 100 31 years

Branch and Bound

The essential idea: search the enumeration tree, but at each node

- 1. Solve the linear program at the node
- 2. Eliminate the subtree (fathom it) if
 - The solution is integer (there is no need to go further) or
 - 2. The best solution in the subtree cannot be as good as the best available solution (the incumbent) or
 - 3. There is no feasible solution

8

12

Branch and Bound

Node 1 is the original LP Relaxation

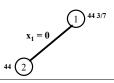
maximize $16x_1 + 22x_2 + 12x_3 + 8x_4 + 11x_5 + 19x_6$ subject to $5x_1 + 7x_2 + 4x_3 + 3x_4 + 4x_5 + 6x_6 \le 14$ $0 \le x_i \le 1$ for j = 1 to 6

Solution at node 1:

 $x_1 = 1$ $x_2 = 3/7$ $x_3 = x_4 = x_5 = 0$ $x_6 = 1$ z = 44 3/7

The IP cannot have value higher than 44 3/7.

Branch and Bound



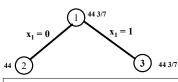
Node 2 is the original LP Relaxation plus the constraint $x_1 = 0$.

maximize $16x_1 + 22x_2 + 12x_3 + 8x_4 + 11x_5 + 19x_6$ subject to $5x_1 + 7x_2 + 4x_3 + 3x_4 + 4x_5 + 6x_6 \le 14$ $0 \le x_i \le 1$ for j = 1 to 6, $x_1 = 0$

Solution at node 2:

 $x_1 = 0$ $x_2 = 1$ $x_3 = 1/4$ $x_4 = x_5 = 0$ $x_6 = 1$ z = 44

Branch and Bound



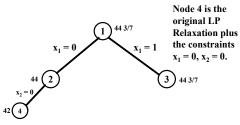
Node 3 is the original LP Relaxation plus the constraint $x_1 = 1$.

The solution at node 1 was

 $| x_1 = 1 \quad x_2 = 3/7 \quad x_3 = x_4 = x_5 = 0 \quad x_6 = 1 \quad z = 44 \ 3/7$

Note: it was the best solution with no constraint on x₁. So, it is also the solution for node 3. (If you add a constraint, and the old optimal solution is feasible, then it is still optimal.)

Branch and Bound

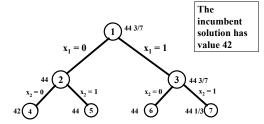


Solution at node 4: $0 \ 0 \ 1 \ 0 \ 1 \ z = 42$

Our first incumbent solution!

No further searching from node 4 because there cannot be a better integer solution.

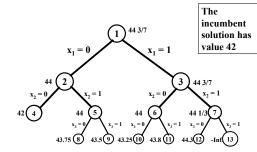
Branch and Bound



We next solved the LP's associated with nodes 5, 6, and 7 No new integer solutions were found.

13

Branch and Bound



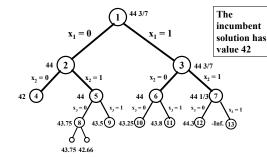
We next solved the LP's associated with nodes 8-13

Summary so far

- We have solved 13 different linear programs so far.
 - One integer solution found
 - One subtree fathomed (pruned) because the solution was integer (node 4)
 - One subtree fathomed because the solution was infeasible (node 13)
 - No subtrees fathomed because of the bound

15

Branch and Bound



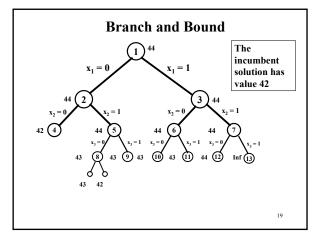
We next solved the LP's associated with the next nodes.

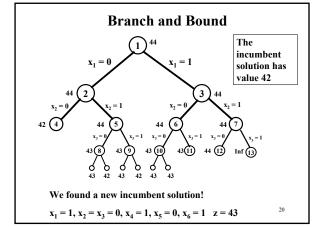
We can fathom the node with z = 42.66. Why?

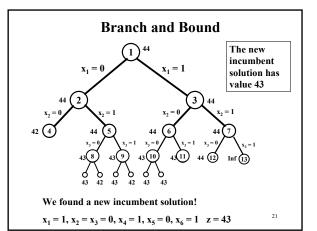
Getting a better bound

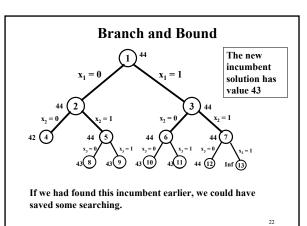
- The bound at each node is obtained by solving an LP.
- But we know the best integer solution has an integer objective value.
- If the best integer valued solution for a node is at most 42.66, then we know the best bound is at most 42.
- Other bounds can also be rounded down.

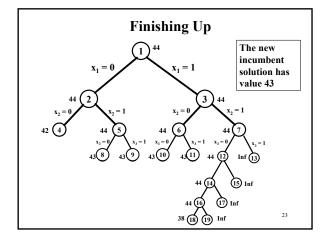
Branch and Bound $x_1 = 0$ $x_1 = 1$ $x_1 = 1$ $x_1 = 1$ $x_1 = 1$ $x_2 = 0$ $x_2 = 1$ $x_2 = 0$ $x_2 = 1$ $x_2 = 0$ $x_3 = 1$ $x_3 = 0$ $x_$











Lessons Learned

- Branch and Bound can speed up the search
 - Only 25 nodes (linear programs) were evaluated
 - Other nodes were fathomed
- Obtaining a good incumbent earlier can be valuable
 - only 19 nodes would have been evaluated.
- Solve linear programs faster, because we start with an excellent or optimal solution
 - uses a technique called the dual simplex method
- Obtaining better bounds can be valuable.
 - We sometimes use properties that are obvious to us, such as the fact that integer solutions have integer solution values

Branch and Bound

Notation:

- z* = optimal integer solution value
- Subdivision: a node of the B&B Tree
- Incumbent: the best solution on hand
- zI: value of the incumbent
- zLP: value of the LP relaxation of the current node
- LIST: the collection of active (not fathomed) nodes
- <u>Children of a node</u>: the two problems created for a node, e.g., by saying x_i = 1 or x_i = 0.

Initialization: LIST = {original problem}

Incumbent: = Ø

z! = -00

25

Branch and Bound Algorithm

<u>INITIALIZE</u>

SELECT:

If LIST = Ø, then the Incumbent is optimal if it exists, and the problem is infeasible if no incumbent exists; else, let S be a subdivision from LIST.

Let $\boldsymbol{x}^{\text{LP}}$ be the optimal solution to \boldsymbol{S}

Let z^{LP} = its objective value

CASE 1. $z^{LP} = -\infty$ (the LP is infeasible)

Remove S from LIST (fathom it)

Return to SELECT

26

Branch and Bound Algorithm

<u>INITIALIZE</u>

SELECT:

If LIST = Ø, then the Incumbent is optimal (if it exists), and the problem is infeasible if no incumbent exists; else, let S be a subdivision from LIST.

Let x^{LP} be the optimal solution to S Let z^{LP} = its objective value

CASE 2. -∞ < z^{LP} <= z^I.

That is, the LP is dominated by the incumbent)

Then remove S from LIST (fathom it) Return to SELECT

27

Branch and Bound Algorithm

INITIALIZE

SELECT:

If LIST = Ø, then the Incumbent is optimal (if it exists), and the problem is infeasible if no incumbent exists; else, let S be a subdivision from LIST.

Let x^{LP} be the optimal solution to S

Let z^{LP} = its objective value

CASE 2. -∞ < z^{LP} <= z^I.

That is, the LP is dominated by the incumbent)

Then remove S from LIST (fathom it) Return to SELECT

28

Branch and Bound Algorithm

INITIALIZE

SELECT:

If LIST = Ø, then the Incumbent is optimal (if it exists), and the problem is infeasible if no incumbent exists;

else, let S be a subdivision from LIST.

Let x^{LP} be the optimal solution to S

Let z^{LP} = its objective value

CASE 3. $z^{I} < z^{LP}$ and x^{LP} is integral.

That is, the LP solution is integral and dominates the incumbent.

Then Incumbent := x^{LP} ;

 $z^{I} := z^{LP}$

Remove S from LIST (fathomed by integrality)

Return to SELECT

29

Branch and Bound Algorithm

INITIALIZE

SELECT:

If LIST = Ø, then the Incumbent is optimal (if it exists), and the problem is infeasible if no incumbent exists;

else, let S be a subdivision from LIST.

Let x^{LP} be the optimal solution to S

Let z^{LP} = its objective value

CASE 4. $z^{I} < z^{LP}$ and x^{LP} is not integral.

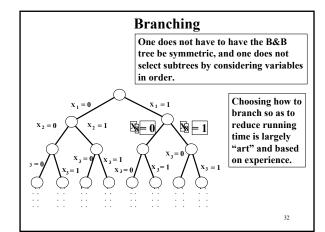
There is not enough information to fathom S

Remove S from LIST Add the children of S to LIST Return to SELECT

Different Selection Rules are Possible

- Rule of Thumb 1: Don't let LIST get too big (the solutions must be stored). So, prefer nodes that are further down in the tree.
- Rule of Thumb 2: Pick a node of LIST that is likely to lead to an improved incumbent.
 Sometimes special heuristics are used to come up with a good incumbent.

31



Different Branching Rules are Possible

- Branching: determining children for a node. There are many choices.
- Rule of thumb 1: if it appears clear that x_j = 1 in an optimal solution, it is often good to branch on x_j = 0 vs x_j = 1.
 The hope is that a subdivision with x_i = 0 can be pruned.
- Rule of thumb 2: branching on important variables is worthwhile
 - e.g., in the location problem, branch on the plant location variables first

33

Different Bounding Techniques are Possible

- We use the bound obtained by dropping the integrality constraints (LP relaxation). There are other choices.
- Key tradeoff for bounds: time to obtain a bound vs quality of the bound.
- If one can obtain a bound much quicker, sometimes we would be willing to get a bound that is worse
- It usually is worthwhile to get a bound that is better, so long as it doesn't take too long (see next lecture)

34

What if the variables are general integer variables?

- One can choose children as follows:
 - child 1: $x_1 \le 3$ (or $x_j \le k$)
 - child 2 $x_1 \ge 4$ (or $x_i \ge k+1$)
- How would one choose the variable j and the value k
 - A common choice would be to take a fractional value from x^{LP} . e.g., if $x_7 = 5.62$, then we may branch on $x_7 \le 5$ and $x_7 \ge 6$.
 - Other choices are also possible.

Summary

- Branch and Bound is the standard way of solving IPs to optimality.
- There is art to making it work well in practice.
- Much of the art is built into state-of-the-art solvers such as CPLEX.

A bad example for implicit enumeration

$$\begin{array}{ll} \text{maximize} & 2x_1+2x_2+2x_3+\ldots+2x_{100} \\ \text{subject to} & 2x_1+2x_2+2x_3+\ldots+2x_{100} \leq 101 \\ & x_i \in \{0,1\} \text{ for } i=1 \text{ to } 100. \end{array}$$

Why is this a bad example? What would happen if we used branch and bound, as described earlier?