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15.053                      Tuesday, April 9

Branch and Bound

Handouts:  Lecture Notes
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Overview of Techniques for Solving 
Integer Programs

Enumeration Techniques
– Complete Enumeration

• list all “solutions” and choose the best
– Branch and Bound

• Implicitly search all solutions, but cleverly eliminate the vast
majority before they are even searched

– Implicit Enumeration
• Branch and Bound applied to binary variables

Cutting Plane Techniques
– Use LP to solve integer programs by adding constraints to 

eliminate the fractional solutions. 
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Investment   1   2   3   4   5   6 

Cash 
Required 
(1000s) 

 
 $5 

 
 $7 

 
 $4 

 
 $3 

 
 $4 

 
 $6 

NPV 
added 
(1000s) 

 
 $16  

 
 $22 

 
 $12 

 
 $8 

 
$11 

 
$19 

 

 

Capital Budgeting Example
Investment budget = $14,000

maximize   16x1 + 22x2 + 12x3 + 8x4 +11x5 + 19x6

subject to    5x1 + 7x2 + 4x3 + 3x4 +4x5 + 6x6  ≤ 14

xj binary for j = 1 to 6
4

Complete Enumeration

Systematically considers all possible 
values of the decision variables.  
– If there are n binary variables, there are  2n

different ways.
Usual idea:  iteratively break the problem 
in two.  At the first iteration, we consider 
separately the case that x1 = 0 and x1 = 1.
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An Enumeration Tree

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

Original 
problem
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On complete enumeration

Suppose that we could evaluate 1 billion 
solutions per second.
Let n = number of binary variables
Solutions times
– n = 30,       1 second
– n = 40,       17 minutes
– n = 50 11.6 days
– n = 60 31 years
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On complete enumeration

Suppose that we could evaluate 1 trillion 
solutions per second, and instantaneously 
eliminate 99.9999999% of all solutions as 
not worth considering
Let n = number of binary variables
Solutions times
– n = 70,       1 second
– n = 80,       17 minutes
– n = 90 11.6 days
– n = 100 31 years
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Branch and Bound

The essential idea:  search the 
enumeration tree, but at each node

1. Solve the linear program at the node
2. Eliminate the subtree (fathom it) if

1. The solution is integer (there is no need to go 
further) or

2. The best solution in the subtree cannot be as 
good as the best available solution (the 
incumbent) or

3. There is no feasible solution 
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Branch and Bound

1 44 3/7

Solution at node 1:      

x1 =1    x2 = 3/7    x3 = x4 = x5 = 0    x6 =1     z = 44 3/7    

Node 1 is the 
original LP  
Relaxation

maximize   16x1 + 22x2 + 12x3 + 8x4 +11x5 + 19x6

subject to    5x1 + 7x2 + 4x3 + 3x4 +4x5 + 6x6  ≤ 14

0 ≤ xj ≤ 1  for j = 1 to 6

The IP cannot have value higher than 44 3/7.  
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Branch and Bound

1

2

x1 = 0

44 3/7

44

Solution at node 2:      
x1 = 0    x2 = 1     x3 = 1/4   x4 = x5 = 0   x6 = 1     z = 44  

Node 2 is the 
original LP  
Relaxation plus 
the constraint 
x1 = 0.

maximize   16x1 + 22x2 + 12x3 + 8x4 +11x5 + 19x6

subject to    5x1 + 7x2 + 4x3 + 3x4 +4x5 + 6x6  ≤ 14

0 ≤ xj ≤ 1  for j = 1 to 6,  x1 = 0
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Branch and Bound

1

2

x1 = 0

44 3/7

44

Node 3 is the 
original LP  
Relaxation plus 
the constraint 
x1 = 1.

3

x1 = 1

The solution at node 1 was      

x1 =1    x2 = 3/7    x3 = x4 = x5 = 0    x6 =1     z = 44 3/7    

Note: it was the best solution with no constraint on x1.  
So, it is also the solution for node 3.  (If you add a 
constraint, and the old optimal solution is feasible, then 
it is still optimal.)    

44 3/7
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Branch and Bound

1

2 3

x1 = 0 x1 = 1

44 3/7

44 44 3/7

Solution at node 4:      0     0     1     0     1 1     z = 42    

4

x2 = 0

42

Our first incumbent solution!
No further searching from node 4 because 
there cannot be a better integer solution.

Node 4 is the 
original LP  
Relaxation plus 
the constraints 
x1 = 0, x2 = 0.

4
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Branch and Bound

1

2 3

x1 = 0 x1 = 1

44 3/7

44 44 3/7

We next solved the LP’s associated with nodes 5, 6, and 7

4

x2 = 0

42

No new integer solutions were found.

5

x2 = 1

6

x2 = 0

7

x2 = 1

44 44 44 1/3

The 
incumbent 
solution has 
value 42 

4
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Branch and Bound

1

2 3

x1 = 0 x1 = 1

44 3/7

44 44 3/7

We next solved the LP’s associated with nodes 8 -13

4

x2 = 0

42 5

x2 = 1

6

x2 = 0

7

x2 = 1

44 44 44 1/3

The 
incumbent 
solution has 
value 42 

8

x3 = 0

9

x3 = 1

10

x3 = 0

11

x3 = 1

12

x3 = 0

13

x3 = 1

43.75 43.5 43.25 43.8 44.3 -Inf.

4

13

15

Summary so far

We have solved 13 different linear 
programs so far.  
– One integer solution found
– One subtree fathomed (pruned) because the 

solution was integer (node 4)
– One subtree fathomed because the solution 

was infeasible (node 13)
– No subtrees fathomed because of the bound
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Branch and Bound
1

2 3

x1 = 0 x1 = 1

44 3/7

44 44 3/7

We next solved the LP’s associated with the next nodes.

4

x2 = 0

42 5

x2 = 1

6

x2 = 0

7

x2 = 1

44 44 44 1/3

The 
incumbent 
solution has 
value 42 

8

x3 = 0

9

x3 = 1

10

x3 = 0

11

x3 = 1

12

x3 = 0

13

x3 = 1

43.75 43.5 43.25 43.8 44.3 -Inf.

43.75 42.66

We can fathom the node with z = 42.66.  Why?
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Getting a better bound

The bound at each node is obtained by 
solving an LP.
But we know the best integer solution has 
an integer objective value.
If the best integer valued solution for a 
node is at most 42.66, then we know the 
best bound is at most 42.
Other bounds can also be rounded down.
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Branch and Bound
1

2 3

x1 = 0 x1 = 1

44 3/7

44 44 3/7

4

x2 = 0

42 5

x2 = 1

6

x2 = 0

7

x2 = 1

44 44 44 1/3

The 
incumbent 
solution has 
value 42 

8

x3 = 0

9

x3 = 1

10

x3 = 0

11

x3 = 1

12

x3 = 0

13

x3 = 1

43.75 43.5 43.25 43.8 44.3 Inf.

43.75 42.66
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Branch and Bound
1

2 3

x1 = 0 x1 = 1

44

44 44

4

x2 = 0

42 5

x2 = 1

6

x2 = 0

7

x2 = 1

44 44 44

The 
incumbent 
solution has 
value 42 

8

x3 = 0

9

x3 = 1

10

x3 = 0

11

x3 = 1

12

x3 = 0

13

x3 = 1

43 43 43 43 44 Inf

43 42
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Branch and Bound
1

2 3

x1 = 0 x1 = 1

44

44 44

4

x2 = 0

42 5

x2 = 1

6

x2 = 0

7

x2 = 1

44 44 44

The 
incumbent 
solution has 
value 42 

8

x3 = 0

9

x3 = 1

10

x3 = 0

11

x3 = 1

12

x3 = 0

13

x3 = 1

43 43 43 43 44 Inf

43 42 43 42 43 43

We found a new incumbent solution!

x1 = 1, x2 = x3 = 0, x4 = 1, x5 = 0, x6 = 1   z = 43
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Branch and Bound
1

2 3

x1 = 0 x1 = 1

44

44 44

4

x2 = 0

42 5

x2 = 1

6

x2 = 0

7

x2 = 1

44 44 44

The new 
incumbent 
solution has 
value 43 

8

x3 = 0

9

x3 = 1

10

x3 = 0

11

x3 = 1

12

x3 = 0

13

x3 = 1

43 43 43 43 44 Inf

43 42 43 42 43 43

We found a new incumbent solution!

x1 = 1, x2 = x3 = 0, x4 = 1, x5 = 0, x6 = 1   z = 43

8 9 10 11
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Branch and Bound
1

2 3

x1 = 0 x1 = 1

44

44 44

4

x2 = 0

42 5

x2 = 1

6

x2 = 0

7

x2 = 1

44 44 44

The new 
incumbent 
solution has 
value 43 

8

x3 = 0

9

x3 = 1

10

x3 = 0

11

x3 = 1

12

x3 = 0

13

x3 = 1

43 43 43 43 44 Inf

If we had found this incumbent earlier, we could have 
saved some searching.

8 9 10 11
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Finishing Up
1

2 3

x1 = 0 x1 = 1

44

44 44

4

x2 = 0

42 5

x2 = 1

6

x2 = 0

7

x2 = 1

44 44 44

The new 
incumbent 
solution has 
value 43 

8

x3 = 0

9

x3 = 1

10

x3 = 0

11

x3 = 1

12

x3 = 0

13

x3 = 1

43 43 43 43 44 Inf8 9 10 11

Inf

Inf

14 15

16 17

44

44

18 19 Inf38 24

Lessons Learned

Branch and Bound can speed up the search
– Only 25 nodes (linear programs) were evaluated
– Other nodes were fathomed

Obtaining a good incumbent earlier can be valuable 
– only 19 nodes would have been evaluated.

Solve linear programs faster, because we start with an 
excellent or optimal solution 
– uses a technique called the dual simplex method

Obtaining better bounds can be valuable.
– We sometimes use properties that are obvious to us, such as 

the fact that integer solutions have integer solution values
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Branch and Bound

Notation:  
– z* = optimal integer solution value
– Subdivision:  a node of the B&B Tree   
– Incumbent:  the best solution on hand
– zI:  value of the incumbent
– zLP:   value of the LP relaxation of the current node 
– LIST:  the collection of active (not fathomed) nodes
– Children of a node:  the two problems created for a 

node, e.g., by saying xj = 1 or xj = 0.

Initialization:   LIST = {original problem}
Incumbent: = ∅
zI = -∞
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Branch and Bound Algorithm
INITIALIZE
SELECT:  

If LIST = ∅ , then the Incumbent is optimal if it exists, and 
the problem is infeasible if no incumbent exists;

else, let S be a subdivision from LIST.
Let xLP be the optimal solution to S
Let zLP = its objective value

CASE 1. zLP = -∞ (the LP is infeasible)
Remove S from LIST  (fathom it)
Return to SELECT
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Branch and Bound Algorithm
INITIALIZE
SELECT:  

If LIST = ∅ , then the Incumbent is optimal (if it exists), and 
the problem is infeasible if no incumbent exists;

else, let S be a subdivision from LIST.
Let xLP be the optimal solution to S
Let zLP = its objective value

CASE 2. -∞ < zLP <= zI.
That is, the LP is dominated by the incumbent)

Then remove S from LIST  (fathom it)
Return to SELECT
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Branch and Bound Algorithm
INITIALIZE
SELECT:  

If LIST = ∅ , then the Incumbent is optimal (if it exists), and 
the problem is infeasible if no incumbent exists;

else, let S be a subdivision from LIST.
Let xLP be the optimal solution to S
Let zLP = its objective value

CASE 2. -∞ < zLP <= zI.
That is, the LP is dominated by the incumbent)

Then remove S from LIST  (fathom it)
Return to SELECT
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Branch and Bound Algorithm
INITIALIZE
SELECT:  

If LIST = ∅ , then the Incumbent is optimal (if it exists), and 
the problem is infeasible if no incumbent exists;

else, let S be a subdivision from LIST.
Let xLP be the optimal solution to S
Let zLP = its objective value

CASE 3. zI < zLP and xLP is integral.
That is, the LP solution is integral and dominates the 
incumbent.

Then Incumbent := xLP;
zI := zLP

Remove S from LIST (fathomed by integrality) 
Return to SELECT 30

Branch and Bound Algorithm
INITIALIZE
SELECT:  

If LIST = ∅ , then the Incumbent is optimal (if it exists), and 
the problem is infeasible if no incumbent exists;

else, let S be a subdivision from LIST.
Let xLP be the optimal solution to S
Let zLP = its objective value

CASE 4. zI < zLP and xLP is not integral.
There is not enough information to fathom S 

Remove S from LIST 
Add the children of S to LIST 
Return to SELECT
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Different Selection Rules are Possible

Rule of Thumb 1:  Don’t let LIST get too big (the 
solutions must be stored).  So, prefer nodes that 
are further down in the tree.

Rule of Thumb 2: Pick a node of LIST that is 
likely to lead to an improved incumbent. 
Sometimes special heuristics are used to come 
up with a good incumbent.
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Branching
One does not have to have the B&B 
tree be symmetric, and one does not 
select subtrees by considering variables 
in order.

Choosing how to 
branch so as to 
reduce running 
time is largely 
“art” and based 
on experience.
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Different Branching Rules are Possible

Branching: determining children for a node.  There are 
many choices.  

Rule of thumb 1:  if it appears clear that xj = 1 in an optimal 
solution, it is often good to branch on xj = 0 vs xj = 1.  
– The hope is that a subdivision with xj = 0 can be pruned.

Rule of thumb 2:  branching on important variables is 
worthwhile
– e.g., in the location problem, branch on the plant location 

variables first

34

Different Bounding Techniques are Possible

We use the bound obtained by dropping the 
integrality constraints (LP relaxation).  There are 
other choices.

Key tradeoff for bounds:  time to obtain a bound 
vs quality of the bound.

If one can obtain a bound much quicker, 
sometimes we would be willing to get a bound 
that is worse

It usually is worthwhile to get a bound that is 
better, so long as it doesn’t take too long (see 
next lecture)
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What if the variables are general 
integer variables?

One can choose children as follows:
– child 1:   x1 ≤ 3    (or   xj ≤ k)
– child 2    x1 ≥ 4    (or xj ≥ k+1)

How would one choose the variable j and 
the value k
– A common choice would be to take a fractional 

value from xLP.  e.g., if x7 = 5.62, then we may 
branch on x7 ≤ 5  and x7 ≥ 6.

– Other choices are also possible.
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Summary

Branch and Bound is the standard way of 
solving IPs to optimality.
There is art to making it work well in 
practice.
Much of the art is built into state-of-the-art 
solvers such as CPLEX.
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A bad example for implicit 
enumeration

maximize    2x1 + 2x2 + 2x3 + . . . + 2x100

subject to 2x1 + 2x2 + 2x3 + . . . + 2x100 ≤ 101
xi ∈ {0,1} for i = 1 to 100.

Why is this a bad example?  What would happen 
if we used branch and bound, as described 
earlier?


