1. [1 point] Prove or disprove the following statement:

If \(V \) is a real inner product space, then for arbitrary non-zero vectors \(v \) and \(w \) in \(V \), we have

\[
-1 \leq \frac{\langle u, v \rangle}{\|u\|\|v\|} \leq 1.
\]
2. [3 points] Find the closest vector to \((2, 1, 2, -1, -2)\) in the subspace spanned by \((1, 1, 0, 0, -1), (1, -1, 1, 0, 0), (0, 0, 0, 1, 0)\).
3. [3 points]
Prove or disprove the following statement:

If \(\{v_1, \ldots, v_n\} \) is an orthogonal set of vectors of an inner product space \(V \), then for each \(v \in V \) we have

\[
\|v\| \geq \sqrt{\sum_{k=1}^{n} \frac{(v, v_k)^2}{\langle v_k, v_k \rangle}}.
\]

Equality holds iff

\[
v = \sum_{k=1}^{n} \frac{(v, v_k)^2}{\langle v_k, v_k \rangle} v_k.
\]
4. [2 points] Find the orthogonal projection of the function e^x on the subspace of $C[-\pi, \pi]$ (with inner product $\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)\overline{g}(x)dx$) generated by $\cos x$ and $\sin x$. (Recall that $\sinh x = \frac{e^x - e^{-x}}{2}$).
5. [4 points] We are given the vector space of continuous functions on $[-1, 1]$, the space $C[-1, 1]$ with inner product $\langle f, g \rangle = \int_{-1}^{1} f(x)\bar{g}(x)dx$. Let $V_+ = \{ f \in C[-1, 1] : f(x) = f(-x) \}$ be the subspace of even functions and $V_- = \{ f \in C[-1, 1] : f(x) = -f(-x) \}$ be the subspace of odd functions. Prove or disprove:

$$V = V_+ \oplus V_-.$$
6.[4 points] Consider a complex vector space V of dimension n. You are given two operators F and G on V such that

$$GF - FG = \alpha F$$

where α is a complex nonzero number. Let v be an eigenvector of G corresponding to eigenvalue λ.

(a) Show (using induction argument) that for all integer k ($k = 1, \ldots$) we have

$$GF^k(v) = (\lambda + \alpha k)F^k(v)$$

(b) Deduce from (a) the existence of an integer $k \in \{0, 1, \ldots, n\}$ such that $F^k(v) = 0$ and that F is not injective.
7. [3 points] We are given \(n \) real nonzero numbers \(b_1, \ldots, b_n \) and the \(n \times n \) matrix \(A \) where the \((i, j)\) entry \(a_{ij} \) is given by

\[
a_{ij} = b_i b_j.
\]

Therefore, \(A \) is the matrix representation of an operator \(T \) of a real \(n \)-dimensional vector space \(V \) in a given basis \(\{e_1, \ldots, e_n\} \).

Using the definition of an eigenvalue and eigenvector, show that \(\lambda_1 = 0 \) is an eigenvalue of \(T \) and that the eigenspace \(E_1 \) associated with \(\lambda_1 \) is a subspace of dimension \(n - 1 \) that you should determine explicitly.