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Abstract. The dual of the strictly convex quadratic programming problem with unit bounds
is posed as a linear `1 minimization problem with quadratic terms. A smooth approximation to
the linear `1 function is used to obtain a parametric family of piecewise-quadratic approximation
problems. The unique path generated by the minimizers of these problems yields the solution to
the original problem for finite values of the approximation parameter. Thus, a finite continuation
algorithm is designed. Results of extensive computational experiments are reported.
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1. Introduction. We consider the strictly convex quadratic programming prob-
lem (QP) with unit bounds:

[BCQP]

min
y

H(y) = −dT y + 1
2y
TQy

subject to −1 ≤ y ≤ 1,

where Q is an m×m symmetric, positive definite matrix, and y and d are m-vectors.
In this paper we study a dual continuation algorithm for the solution of [BCQP].

We first show that the dual of [BCQP] is an unconstrained minimization problem,
where the function is composed of a linear `1 term and strictly convex quadratic
terms. This nondifferentiable function is approximated by a smooth piecewise linear-
quadratic Huber function. The resulting smooth problems yield a unique path that
converges to the primal-dual optimal solutions. We follow the path using a continua-
tion algorithm based on Newton’s method. This algorithm is inspired by our earlier
work on linear programming with unit bounds [11]. In this reference, the dual of a
linear program is formulated as an `1 minimization problem. We solve the dual prob-
lem using a continuation algorithm based on the piecewise-linear paths generated by
a smooth approximation problem. The smooth problem comes from robust statistics,
where it was used by Huber as an alternative to the least squares estimation [7]. The
most important property of the smooth problems is that they yield primal-dual opti-
mal solutions for sufficiently small values of a continuation parameter. This allows a
new finite, numerically stable continuation algorithm for linear programming.

We apply a similar philosophy here to the dual of [BCQP]. We approximate the `1
term by a Huber function term. This yields a family of problems parameterized by a
smoothing parameter γ. This parameter is alternatively referred to as a continuation
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parameter as in the linear programming case. However, unlike the linear programming
case, the path generated by the minimizers of the smooth problem is unique and is no
longer piecewise linear. This requires a fresh look at the properties of the path and
its behavior for sufficiently small values of the continuation parameter, that is, the
analysis of [11] does not apply here. However, we are able to establish that primal-dual
optimal solutions are obtained from the path for positive, sufficiently small values of
the parameter.

The following properties of the approximation are emphasized as the main con-
tributions of this paper:

P0. The primal-dual minimizers of the smooth problem define a unique path as
a function of the smoothing parameter γ.

P1. The primal-dual optimal solutions to [BCQP] are obtained for sufficiently
small γ > 0 using information from the path, that is, γ does not have to
be decreased to zero in order to obtain an exact solution to the QP problem
(Theorems 2.2 and 2.3).

P2. Although the unique path leading to the primal-dual solutions is nonlinear,
a powerful extrapolation result allows computation of primal-dual candidates
for optimality (Theorem 2.2).

Furthermore, our main results are obtained without any nondegeneracy assump-
tions on the problem. In particular, Theorem 2.2 (the description of the extrapola-
tion) and Theorem 2.3 (the behavior of the path for small values of the continuation
parameter) are established in the absence of any restrictive assumptions.

These properties suggest an algorithm to trace the path to arrive at a solution of
[BCQP]. We refer to the path as the “solution path” throughout the rest of the paper.
Our algorithm is best interpreted as a continuation algorithm since it possesses the
following main features of continuation algorithms.

1. The solution of a parametrized family of subproblems as a parameter varies
over an interval; in our case, the smooth “Huber” problem as a function of
the smoothing parameter γ.

2. The use of a local iterative method to solve the subproblems. We use a finite
Newton method [10] to solve the smooth Huber problem.

3. The use of an extrapolation technique to guess an optimal primal-dual pair
from a point on the path.

As a result of P1 and P2 above, the continuation algorithm is a finite procedure
provided that γ is decreased by at least a certain factor after each unconstrained
minimization. We make these ideas precise in the forthcoming sections.

In this algorithm, Newton’s method is used to locate the path for some value of
the smoothing parameter. Unless optimality is reached, Newton’s method is invoked
for a reduced value of the parameter from a point no longer on the path, and the cycle
is repeated. We summarize the algorithmic scheme as follows:

Compute initial γ
repeat

compute a solution of the approximation problem
decrease γ

until optimality.
This scheme closely relates our algorithm to penalty and barrier methods and

in general to path-following methods. To the best of our knowledge, from this per-
spective, both the theoretical analysis of section 2 and the algorithm stand as novel
contributions to the quadratic programming literature.
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We develop a numerically stable implementation of the new algorithm for dense
problems. We also compare the performance of the algorithm to LSSOL, a software
system for quadratic programming from Stanford University’s Systems Optimization
Laboratory, and to an interior point algorithm of Han, Pardalos, and Ye [6].

For a review of the literature on quadratic programming we refer the reader to
the paper by Moré and Toraldo [14]. It seems that currently the fastest algorithms
for [BCQP] are the active set methods [14]. For problem [BCQP], active set methods
can efficiently add or delete many constraints from the active set at one iteration.
Primal-dual interior point algorithms have also been recently developed for [BCQP]
[6]. Other related ideas have been proposed in more recent papers by Coleman and
Hulbert [1] and Li and Swetits [8, 9]. In [1] Coleman and Hulbert reformulate [BCQP]
as an unconstrained minimization problem involving an `1 term. This reformulation
is obtained by manipulating the Karush–Kuhn–Tucker conditions of [BCQP]. They
apply a superlinearly convergent modified Newton method to this reformulation. In
this regard our point of departure is identical to that of [1]. Li and Swetits [8, 9] refor-
mulate the convex quadratic programming problem as an unconstrained minimization
of a convex quadratic spline function.

In the rest of the paper we proceed as follows. In section 2 we present a simple
derivation of the dual problem, and we explore the relation of the nondifferentiable
dual to the approximation problem. We give the details and analysis of Newton’s
method applied to the approximation problem in section 3. In section 4 we discuss
some implementation details and generation of test problems, and we report the results
of extensive computational experiments with the new algorithm. Comparisons to
competing algorithms are also made. Concluding remarks are offered in section 5.

2. A nondifferentiable dual problem and its approximation. We begin
our study of [BCQP] by deriving a dual problem. Since Q is symmetric positive
definite, there exists a full rank matrix A ∈ <m×m such that Q = ATA. Then the
quadratic program can be rewritten

min
y

−(AT b)T y +
1

2
yTATAy

subject to −1 ≤ y ≤ 1

for some b ∈ <m such that d = AT b. Let u = Ay and rewrite the problem as

min
y,u

−bTu+
1

2
uTu

subject to Ay = u

−1 ≤ y ≤ 1.

Associating dual multipliers x ∈ <m with the equality constraints, we form
the following Lagrangian max-min problem:

max
x

min
u,−1≤y≤1

{
1

2
uTu− bTu+ xT (Ay − u)

}
,

which is equivalent to

max
x

{
min
u

{
1

2
uTu− bTu− uTx

}
+

{
min
−1≤y≤1

xTAy

}}
.



CONTINUATION FOR QUADRATIC PROGRAMMING 65

It is easy to see that the first minimization yields the identity

Ay = x+ b.(2.1)

Hence, we get the term

−1

2
xTx− bTx− 1

2
bT b.

The second minimization over y is also straightforward and yields

min
−1≤yi≤1

xi(Ay)i =

{
(ATx)i if (ATx)i ≤ 0,
−(ATx)i if (ATx)i ≥ 0.

However, this is simply the negative of the `1-norm of ATx. Therefore, our dual
problem is

minimizeF (x) ≡ ‖ATx‖1 +
1

2
xTx+ bTx+

1

2
bT b.(2.2)

As a result of strict convexity, the primal and dual optimal solutions are unique.
Let

r(x) = ATx.(2.3)

From the derivation, the conditions for (y0, x0) to be optimal can be expressed as

Ay0 = b+ x0 ,

ri(x0) > 0 =⇒ y0i = −1,
ri(x0) < 0 =⇒ y0i = 1,

−1 < y0i < 1 =⇒ ri(x0) = 0,

for all i = 1, . . . ,m. From this point on, we use (y0, x0) to denote a primal-dual
optimal pair.

Let us define a set Ŝ of “sign vectors” such that Ŝ = {s ∈ <m | si ∈ {−1, 0, 1}}.
Now, define the sign vector s0(x) such that

s0i(x) =

 −1 if ri(x) < 0,
0 if ri(x) = 0,
1 if ri(x) > 0,

(2.4)

and define

W0 = diag(w1, . . . , wm) with wi = 1− s2
0i.(2.5)

Let s0 = s0(x0) and let W0 be derived from s0 using (2.5). Now, we can compactly
express the optimality conditions as

AW0y0 −As0 = b+ x0.(2.6)

Since A has full rank, this implies that the following linear system is consistent:

(AW0A
T )h = As0 + b+ x0.(2.7)

Since the null space N (AW0A
T ) coincides with the null space N (W0A

T ), W0A
Th is

constant no matter which solution h to (2.7) is picked.
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2.1. The smooth Huber approximation. Consider the function φ : < 7→ <:

φγ(t) =

{ 1
2γ t

2 if |t| ≤ γ,

|t| − 1
2γ if |t| > γ,

(2.8)

for some scalar parameter γ > 0. This function is known as Huber’s M-estimator
function in robust statistics. Now, we replace (2.2) by the following differentiable
problem:

min
x

Φγ(x) +
1

2
xTx+ bTx+

1

2
bT b,(2.9)

where

Φγ(x) =

m∑
i=1

φγ(ri(x)).(2.10)

We discuss some well-known properties of this function in section 3.1. To view this
problem in quadratic programming format, we define a new sign vector sγ :

sγ(x) = [sγ1(x), . . . , sγm(x)] with sγi(x) =

 −1 if ri(x) < −γ,
0 if |ri(x)| ≤ γ,
1 if ri(x) > γ,

(2.11)

and define

Ws = diag(w1, . . . , wm) with wi = 1− s2
γi.(2.12)

Therefore, we have the following minimization problem:

minimize Fγ(x) ≡ 1

2γ
rTWsr + sTγ

[
r − 1

2
γsγ

]
+

1

2
xTx+ bTx+

1

2
bT b,(2.13)

where the argument x of r and sγ is dropped for notational convenience. We refer
to the above problem as the “Huber problem” for ease of expression. Clearly, this
problem has a unique minimizer as a result of strict convexity. In the following, we
use the notations xγ for the minimizer of Fγ and Wγ = Ws, where s = sγ(xγ). For
notational convenience, we use Wγ and Ws interchangeably in our analysis when the
meaning is clear from the context.

It can be shown using Lagrangian duality that the dual problem to (2.13) is
given by

[PBCQP]

min
y

H(y) = −dT y +
1

2
yT (Q+ γI)y

subject to −1 ≤ y ≤ 1.

We notice that the above problem is simply a quadratically perturbed version of
[BCQP]. This relates our analysis to previous studies by Mangasarian [12] and Man-
gasarian and Meyer [13], where quadratic and nonlinear perturbations of linear pro-
grams were addressed.
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2.2. The relation between F, Fγ , and [BCQP]. In this section we establish
some important properties of the Huber approximation. These properties characterize
the proposed algorithm and are used to verify finite convergence.

We begin with some simple results. We can immediately observe the following
elementary fact:

lim
γ→0

φγ(t) = |t| ,(2.14)

for any t ∈ <. Now, we have the following simple result.
Lemma 2.1. Let xγ denote the minimizer of the function Fγ . Then,

0 ≤ F (x0)− Fγ(xγ) ≤ mγ

2
.(2.15)

Proof. From the definitions of F and Fγ , we have for any x ∈ <m

0 ≤ F (x)− Fγ(x) ≤ mγ

2
.

Since x0 and xγ are minimizers of F and Fγ , we therefore obtain

Fγ(xγ) ≤ Fγ(x0) ≤ F (x0)

and

F (x0)−mγ

2
≤ Fγ(xγ)−mγ

2
≤ Fγ(xγ).

This proves (2.15).
Theorem 2.1. Let xγ denote the minimizer of the function Fγ . Then,

lim
γ→0

xγ = x0.(2.16)

Proof. Since the functions are continuous and strictly convex, i.e., the minimizers
are unique, the result follows using (2.14) and (2.15).

Let s = sγ(xγ). The minimizer xγ of Fγ satisfies the following necessary condition:

A

[
1

γ
Wsr(xγ) + s

]
+ b+ xγ = 0,(2.17)

which may be written in the form(
AWsA

T + γI
)
xγ = −γ(As+ b),(2.18)

or as

Ayγ = b+ xγ ,(2.19)

where we have defined

yγ = −
(

1

γ
Wγr(xγ) + s

)
.(2.20)

Using (2.17) we see that yγ is feasible in [BCQP] and optimal in [PBCQP]. Clearly,
using (2.1), (2.16), and (2.19) we have

lim
γ→0

yγ = y0.(2.21)
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In the remainder of this section, we study the behavior of the solution paths {xγ}
and {yγ} as γ ↘ 0. For fixed s (and therefore Ws) we introduce the singular value
decomposition (SVD) of the matrix WsA

T :

WsA
T = UΣV T .(2.22)

Here, the matrices U and V with columns {uj}mj=1 and {vj}mj=1 are orthogonal, and
the singular values are given in Σ :

Σ = diag(σ1, . . . , σm) with σ1 ≥ · · · ≥ σq > 0, σq+1 = · · · = σm = 0.(2.23)

The number q is the rank of the matrix WsA
T , the vectors {uj}qj=1 and {vj}qj=1 form

an orthonormal basis of the range of WsA
T and AWsA

T , respectively, and {vj}mj=1 is
an orthonormal basis of <m. This means that we can write

As+ b =

m∑
j=1

αjvj = V α,(2.24)

and by inserting (2.22) into (2.18) we get(
V Σ2V T + γI

)
xγ = −γV α,

from which we find

xγ = −γ
m∑
j=1

αj
σ2
j + γ

vj = −γ
q∑
j=1

αj
σ2
j + γ

vj −
m∑

j=q+1

αjvj .(2.25)

Furthermore, from (2.20) and (2.22) we get

yγ =

q∑
j=1

σjαj
σ2
j + γ

uj − s.(2.26)

As we shall see in Theorem 2.3, sγ(xγ) and therefore, Ws are constant for γ small
enough. When the SVD factorization (2.22) corresponds to this Ws, it follows that

x0 = lim
γ→0

xγ = −
m∑

j=q+1

αjvj and y0 = lim
γ→0

yγ =

q∑
j=1

αj
σj

uj − s.(2.27)

In the algorithm of section 3 we do not compute the SVD, but the following
theorem provides us with an extrapolation formula that is used in our algorithm to
test for optimality. To the best of our knowledge, this is a new result in the path-
following literature.

Theorem 2.2. Let xδ be the minimizer of Fδ for 0 < δ ≤ γ with s = sδ(xδ) and
W = Ws. Assume that sδ(xδ) = s for 0 < δ ≤ γ. Then,

x0 = xδ + δd
(δ)
δ and y0 = WAT d

(0)
δ − s ,(2.28)

where d
(δ)
δ and d

(0)
δ are the minimum-norm solutions to the linear systems

(AWAT )d = As+ b+ xδ and (AWAT )d = As+ b+ x0 ,(2.29)

respectively.
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Proof. From (2.24)–(2.25) we get

As+ b+ xδ =

q∑
j=1

(
1− δ

σ2
j + δ

)
αjvj =

q∑
j=1

σ2
j

σ2
j + δ

αjvj(2.30)

(the contributions for j = q+1, . . . , n cancel). Thus, the first of the rank-deficient
systems in (2.29) is consistent, and the minimum-norm solution is

d
(δ)
δ =

q∑
j=1

αj
σ2
j + δ

vj .(2.31)

By adding δd
(δ)
δ to xδ (given by (2.25)) we get x0, as expressed in (2.27). For the

other system, we find

As+ b+ x0 =

q∑
j=1

αjvj .(2.32)

Thus, the second system in (2.29) is also consistent. The minimum-norm solution is

d
(0)
δ =

q∑
j=1

αj
σ2
j

vj ,(2.33)

and by inserting this into (2.28) we get y0 as expressed in (2.27).
In general, let (x̂0, ŷ0) denote the quantities computed by (2.28). They provide

practical termination criteria for the algorithm defined in section 3.
In Theorem 2.3 we show that sγ(xγ) is constant when γ is small enough. For

some of the components of sγ this is almost trivial. The components which cause
difficulty are those for which ri(x0) = 0 and |y0i| = 1. This set is denoted by D, and
the set of sign vectors for which the “easy” components equal those of s0 is denoted
by S. More precisely, D and S are defined as follows. Let s ∈ Ŝ, κ+

s = {i : si = 1},
and κ−s = {i : si = −1} with κs = κ+

s ∪ κ−s and κ0
s = {i : si = 0}. Let D = {i : |y0i| =

1} ∩ κ0
s and S = {s ∈ Ŝ | si = s0i for i 6∈ D}.

Theorem 2.3. Let s0 = s0(x0). There exists γ∗ such that sγ(xγ) is constant,
with κ+

s0 ⊆ κ+
sγ , κ

−
s0 ⊆ κ−sγ for 0 < γ ≤ γ∗.

Proof. Since the number of different sign vectors is finite, there must exist a
sequence of positive numbers γ1, γ2, . . ., with γk ↘ 0 for k → ∞ such that sγ(xγ) is
constant for γ = γk, k = 1, 2, . . . . Denote this constant sign vector by s.

According to (2.3) and (2.11), the elements of s are defined by the values of
ri(xγ) = aTi xγ . Since xγ→x0, we have |aTi xγ |>γ for i∈κ0

s and γ small enough.
Furthermore, since yγ→y0, we have from (2.20) that |aTi xγ |/γ<1 for i∈κ0

s0\D, and γ
small enough. Therefore, since γk↘0, it must be the case that s∈S.

Now, let W = Ws and let (2.22) be the SVD factorization of WAT . Furthermore,
let dγ be the solution to

(AWAT + γI)dγ = As+ b+ x0.

By inserting (2.32), we see that

dγ =

q∑
j=1

αj
σ2
j + γ

vj .(2.34)
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We introduce

ψi(γ) ≡ aTi dγ =

q∑
j=1

αj
σ2
j + γ

aTi vj

for i = 1, 2, . . . ,m. Since ψi is a rational function for γ>0, it can only have a finite
number of oscillations as γ→0, and hence there exists γ∗1 > 0 such that for each i

either |ψi(γ)| > 1 for 0 < γ ≤ γ∗1
or |ψi(γ)| ≤ 1 for 0 < γ ≤ γ∗1 .

If i /∈ κs0 , then ri(x0) = 0 and

ri(x0 − γdγ) = −γψi(γ).

Hence, the ith component of sγ(x0 − γdγ) is constant for 0 < γ ≤ γ∗1 . Since dγ is
bounded (see (2.34)) the other components of sγ(x0 − γdγ) must also be constant in
some interval 0 < γ ≤ γ∗2 . Therefore, sγ(x0 − γdγ) is constant for 0 < γ ≤ γ∗3 ≡
min{γ∗1 , γ∗2}.

Finally, let γ = γk, γk ≤ γ∗3 denote a value for which sγ(xγ) = s. It follows from
(2.25), (2.27), and (2.34) that the unique minimizer xγ is equal to x0 − γdγ .

Notice that S may be a singleton, in which case it is possible to establish a
stronger result. This depends on a certain nondegeneracy assumption stated below.

Theorem 2.4. Let x0 be the minimizer of F with s = s0(x0) and W = Ws.
Assume there exists γ1 > 0 such that the solution dγ to the system

(AWAT + γI)d = As+ b+ x0(2.35)

has the property

‖WAT dγ‖∞ ≤ 1 for γ ∈ (0, γ1] .(2.36)

Then, there exists γ∗ > 0 such that sγ(xγ) is constant for γ ∈ (0, γ∗]. Furthermore,
sγ(xγ) = s for γ ∈ (0, γ∗].

Proof. Let δ = min{|ri(x0)| : ri(x0) 6= 0}. Choose γ2 < δ such that, for 0 < γ ≤
γ2,

ri(x0)− γaTi dγ > γ2 for i ∈ κ+
s ,(2.37)

ri(x0)− γaTi dγ < −γ2 for i ∈ κ−s .(2.38)

Using (2.36), sγ(x0 − γdγ) = s(x0). Now, from (2.35) and using the fact that
WATx0 = 0, we get

(AWAT + γI)(−γdγ) = −γ(As+ b+ x0),
(AWAT + γI)(−γdγ) = −AWATx0 − γ(As+ b+ x0),

(AWAT + γI)(x0 − γdγ) = −γ(As+ b).

Hence, x0 − γdγ is the minimizer of Fγ , and the theorem is proved with γ∗ =
min{γ1, γ2}.

Definition 2.1. A primal-dual optimal pair (y, x) is nondegenerate if the fol-
lowing condition holds for each zero component ri(x) of r(x):

ri(x) = 0 and − 1 < yi < 1 .(2.39)
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Corollary 2.1. Let (y0, x0) be a nondegenerate primal-dual optimal pair for
[BCQP] with s = s0(x0) and W = W0(x0). Then, there exists γ∗ > 0 with γ∗ <
min{|ri(x0)| : i ∈ σs} such that sγ(xγ) = s for γ ∈ (0, γ∗].

Proof. Since A has full rank, under the nondegeneracy assumption on (y0, x0) any
solution d to the optimality system (2.7)

(AWAT )d = As+ b+ x0

satisfies

‖WAT d‖∞ < 1.

Now, using the fact that limγ→0 dγ = d∗, where d∗ denotes the minimum-norm solu-
tion to (2.7) and the continuity of the norm in its argument, there exists γ∗1 > 0 such
that for γ ∈ (0, γ∗1 ] the unique solution dγ of (2.35) satisfies

‖WAT dγ‖∞ < 1.

The rest of the proof follows from Theorem 2.4.
Hence, under a nondegeneracy assumption, the Huber problem is guaranteed to

generate a sign vector identical to the sign vector corresponding to the dual optimal
point x0 for a sufficiently small value γ∗ of γ. The magnitude of γ∗ is related to the
smallest nonzero component of r(x0) as stated in Corollary 2.1.

3. The algorithm. The new algorithm is based on minimizing the function Fγ
for a set of decreasing values of γ. It can be described as follows. Starting from a
point x, we find a minimizer of Fγ for some γ > 0, i.e., we locate the solution path for
some value of γ. Utilizing Theorem 2.2 we compute (ŷ0, x̂0), estimates of primal-dual
solutions. If optimality is not reached at (ŷ0, x̂0), we reduce the value of γ. Starting
from a new point corresponding to the reduced value of γ, we compute the exact
minimizer of Fγ using a Newton-type algorithm. Hence, we follow the solution path
closely without having to stay on it. Based on Theorem 2.2, this process terminates
when the duality gap is closed and primal feasibility is obtained.

The algorithm has two main components: (1) the solution of the smooth problem,
i.e., minimization of Fγ for a given value of γ; (2) the check for optimality and
the reduction of γ with the computation of an initial point for the solution of the
subsequent Huber problem. We now consider these two components in detail.

3.1. Solving the Huber problem.

3.1.1. Properties of Fγ . In this section we describe some essential properties
of Fγ .

Clearly, Fγ is composed of a finite number of quadratic functions. In each domain
D⊆<m, where sγ(x) is constant, Fγ is equal to a specific quadratic function. These
domains are separated by the following union of hyperplanes:

Bγ = {x ∈ <m | ∃i : |ri(x)| = γ}.
A sign vector s is γ-feasible at x if

for all ε>0 ∃z ∈ <m \Bγ : ‖x− z‖ < ε ∧ s = sγ(z).

If s is a γ-feasible sign vector at some point x, then let Qs be the quadratic function
which equals Fγ on the subset

Cγs = cl{z ∈ <m | sγ(z) = s}.(3.1)



72 KAJ MADSEN, HANS BRUUN NIELSEN, AND MUSTAFA ÇELEBI PıNAR

Cγs is called a Q-subset of <m. Notice that any x ∈ <m \ Bγ has exactly one cor-
responding Q-subset (s = sγ(x)), whereas a point x ∈ Bγ belongs to two or more
Q-subsets. Therefore, in general we must give a sign vector s in addition to x in order
to specify which quadratic function we are currently considering as representative of
Fγ . However, the gradient of Fγ is independent of the choice of s.

Qs can be defined as follows:

Qs(z) =
1

2γ
(z − x)T (AWsA

T + I)(z − x) + F
′T
γ (x)(z − x) + Fγ(x).(3.2)

The gradient of the function Fγ is given by

F ′γ(x) = A

[
1

γ
Wsr(x) + s

]
+ b+ x,(3.3)

where s is a γ-feasible sign vector at x. For x ∈ <m \ Bγ , the Hessian of Fγ exists
and is given by

F ′′γ (x) =
1

γ
AWsA

T + I.(3.4)

The set of indices corresponding to “small” residuals

Aγ(z) = {i | 1 ≤ i ≤ m ∧ sγi(z) = 0}(3.5)

is called the γ-active set at z.

3.1.2. Computing a minimizer of Fγ . The algorithm for computing a mini-
mizer x∗ of Fγ is based on a modified Newton algorithm given in [10]. This algorithm
becomes simpler in our case as a result of strict convexity of the objective function.
The algorithm consists of applying Newton’s method to the function Fγ followed by
a piecewise linear one-dimensional search. The idea is to locate the Q-subset of <m
which contains its own minimizer using Newton’s method. A search direction h is
computed by minimizing the quadratic Qs, where s = sγ(x) and x is the current
iterate. More precisely, we consider the equation

Q′′sh = −Q′s(x),

where Q′′s and Q′s denote the Hessian and gradient of Qs, respectively. From (3.2)–
(3.4) we obtain

(AWsA
T + γI)h = −AWsr − γ(As+ b+ x).(3.6)

The next iterate is found by a line search aiming for a zero of the directional derivative
[10]. More precisely, the next iterate is the point x+αh, α > 0, for which the function

ρ(α) = Fγ(x+ αh)

is minimized. Since ρ is a convex univariate function, the problem is to find a zero of
the increasing piecewise-linear smooth function ρ′. The solution α to this problem is
positive since ρ′(0) < 0 by the definition of h.

Let {αk}, k = 1, . . . , n be the set of positive breakpoints where ρ′ has kinks,
i.e., the set of points where an sγi(x+ αh) changes value:

K = {α > 0 | ∃i ∈ E : |(AT (x+ αh))i| = γ},
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where E = {i | 1 ≤ i ≤ m ∧ (ATh)i 6= 0}. Assume that the points αk, k = 1, . . . , n
are given in ascending order. Then the line search procedure is as follows:

j := 0
α0 = 0
repeat

j ← j + 1
find ρ′(αj)

until ρ′(αj) ≥ 0
find the zero α of the linear function ρ′ in the interval [αj−1, αj ].

This procedure is computationally cheap as a result of the piecewise-linear nature
of F ′γ . First, the elements of the set K need not be sorted in practice. It suffices to
pick the smallest element among the elements that remain in the set as the search
proceeds. Furthermore, the quantity ρ′(αj) is easily obtained from ρ′(αj−1), since the
move from αj−1 to αj only affects one term in the defining equation of ρ′. A more
detailed description of this procedure is given in [10].

We summarize below the modified Newton algorithm:

repeat
s = sγ(x)
find h from (3.6)
if x+ h ∈ Cγs then

x← x+ h
stop = true

else
x← x+ αh (line search)

endif
until stop.

The algorithm stops when we have x + h ∈ Cγs(x), i.e., we have found the local

quadratic which contains its own minimum. Therefore, x + h is a minimizer of Fγ
as a result of (3.1), (3.2), and the convexity of Fγ . Now, we show that this occurs
in a finite number of iterations. First, we notice that the line searches made in the
algorithm are well defined. This follows from two observations. First, since A has
full rank, there exists an index j for which (ATh)j 6= 0. Hence, the set E of break-
points is always nonempty. Furthermore, ρ(α) is a strictly convex quadratic function
of α, which implies that the line search must terminate at a minimum along the
half-line.

Theorem 3.1. The Newton algorithm stops at a minimizer of Fγ after a finite
number of iterations.

Proof. The set of iterates is bounded since the method is descent. Suppose that
the iteration is infinite. Then, the set of iterates must have an accumulation point,
z∗, say. We consider two cases:

(i) F ′γ(z∗) 6= 0: Since F ′γ is continuous and since Fγ is composed of a finite
number of quadratics, all directions are found via a finite set of positive definite
matrices AWsA

T + γI. Hence, there exists ε > 0 and δ > 0 such that ‖z∗ − x‖ < ε
implies Fγ(x)−Fγ(xnext) > δ, where xnext is the successor of x in the iteration. Since
this happens infinitely often, the function values must tend to −∞, which contradicts
the boundedness of Fγ from below.

(ii) F ′γ(z∗) = 0: In this case, z∗ is the minimizer of Fγ because of convexity.
Let x be an iterate with z∗ ∈ Cγs(x). Since z∗ minimizes the quadratic Qs and h is

found by (3.6), x+ h = z∗, and the algorithm stops.
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3.2. Checking optimality and reducing γ. Let xγ be a minimizer of Fγ
computed using the Newton algorithm of the previous section. Then, either the con-
tinuation algorithm terminates or the Newton algorithm is restarted using a reduced
value of γ.

The stopping test is based on Theorem 2.2. It consists of checking the duality
gap H(ŷ0) − F (x̂0) and the feasibility of ŷ0, where (ŷ0, x̂0) are as given in Theorem
2.2. If the duality gap is zero (within the roundoff tolerance), then the algorithm is
stopped provided the components of ŷ0 satisfy

−1 ≤ yi ≤ 1.

Otherwise, γ is decreased as

γnew = β · γold,
where β ∈ (0, 1). The precise description of this procedure is as follows:

s = sγ(xγ)

compute the minimum norm solution d
(γ)
γ to (AWAT )d = As+ b+ xγ

compute x̂0 = xγ + γd
(γ)
γ

compute the minimum norm solution d
(0)
γ to (AWAT )d = As+ b+ x̂0

compute ŷ0 = WAT d
(0)
γ − s

if H(ŷ0)− F (x̂0) = 0 and ŷ0 is feasible then
stop = true

else
γ ← β · γ

endif
To compute an advantageous starting point for the subsequent Newton iteration with
γnew, we use the following linear system derived from necessary conditions (2.17):

(AWAT + γnewI)x = −γnew(As+ b),(3.7)

where s = sγ(xγ) and W = Wγ(xγ). The solution xnew of (3.7) is used as the starting
point for the Newton iteration.

We note that this procedure guarantees that, unless the duality gap is closed, γ
is decreased by a nonzero factor after each unconstrained minimization. Hence, we
have the following theorem.

Theorem 3.2. The continuation algorithm described in sections 3.1.2 and 3.2
stops at a primal-dual optimal pair (y0, x0) after a finite number of iterations.

Proof. As a result of the above observation, γ is reduced by a certain factor after
each unconstrained minimization phase unless optimality is reached. Hence, using
Theorem 2.3, γ can only be decreased a finite number of times. Since the Newton
algorithm of section 3.1.2 is finite (Theorem 3.1), the result follows.

4. Implementation and testing. The major effort in the dual algorithm of
section 3.1.2 is spent in solving systems (3.6) and (2.29). We use the AAFAC package
of [15] to perform this. The solution is obtained via an LDLT factorization of the
matrix Ck = AWsA

T + γI (where γ is zero in the case of (2.29)), so D and L
are computed directly from the γ-active columns of A, i.e., without squaring the
condition number as would be the case if Ck was first computed. The efficiency
of the Newton algorithm depends critically on the fact that the difference between
the γ-active set Aγ(xk) and Aγ(xk−1) is caused by a few elements. This implies
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that the factorization of Ck can be obtained by relatively few up- and downdates of
the factorization of Ck−1. Therefore, the computational cost of a typical iteration
step is O(m2). Occasionally, a refactorization is performed. This consists of the
successive updating of LDLT ← LDLT + aja

T
j for all j in the γ-active set (starting

with L = I,D = γI). It is considered only when some columns of A leave the active
set, i.e., when downdating is involved. If many columns leave, we may refactorize
because it is cheaper. This part of the algorithm combines ideas from [3, 4]. For
details see section 2 in [15]. The refactorization is an O(m3) process.

When a minimizer xγ is at hand, a refactorization is needed to compute the
minimum-norm solutions in system (2.29).

The stopping criteria in the Newton algorithm are implemented as follows. The
iterate x+ h is considered to be in Cγs if

[for all i ∈ Aγ(x) : |ri + (ATh)i| ≤ γ + τ ] and

[for all i /∈ Aγ(x) : sγi · (ri + (ATh)i) > γ − τ ].

Here, τ ≈ O(εM‖A‖∞‖x‖∞) is used to take into account effects of rounding errors; εM
denotes unit roundoff of the computer. We refer to the subroutine that implements
the algorithm as QPASL1. With the exception of some internal tolerance parameters
(e.g., tolerances used for numerical checks for zero) QPASL1 does not allow any control
over the execution of the algorithm. Hence, all the results reported in this study were
obtained under identical algorithmic choices. Further implementation details are given
in [16].

4.1. Test problems. We generate test problems using ideas described in [1, 6,
14].

A symmetric positive definite matrix Q is generated as Q = MTM , where M =
D1/2Y and Y = I − (2/‖y‖2)yyT for some vector y ∈ <m randomly generated in the
interval (−1, 1). The matrix D is diagonal with components di:

log di =
(i− 1)

(n− 1)
ncond for i = 1, . . . ,m.

It is easy to verify that ncond specifies the condition number of the matrix Q. The
matrix A is obtained as the Cholesky factor of Q. This implies that A is triangular,
and it is easy to recover the dual optimal solution from the generated “residual” vector
r using (2.3).

The components of vectors y and r are generated simultaneously in accordance
with a randomly generated sign vector s as follows.

for i = 1 : m do
Generate µ uniformly in (−1, 1)
if |m · µ| < nb then

si = (−1)i−1

Generate ν uniformly in (0, 1)
ri = si10−ν·ndeg

else
yi = µ
ri = 0
si = 0

endif
end
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To introduce near-degeneracy, we use the following identity to define ri if si = 1
or −1:

ri = si10−ν·ndeg.

Near-degeneracy is turned off by choosing ndeg = 1. Furthermore, the parameter nb
in the above procedure is chosen as a fraction of m. Knowing r, x is computed from
definition (2.3) by solving the linear system

ATx = r.

Finally, using the necessary condition for a minimizer (2.17) of Fγ we obtain b from
the identity:

b = Ay − x.
4.2. Competing algorithms. The main competitors of the proposed algorithm

are active set methods and interior point methods.
Active set methods choose a subset of the set of variables to be fixed at their

lower and upper bounds. The resulting quadratic problem is solved over the free
variables. The algorithm generates a descent direction keeping the variables in the
active set fixed at their bounds, and performs a line search restricted by the largest
step that can be used before one of the free variables reaches a bound. This scheme
is repeated until a unit step length is found. At the end of this phase the Karush–
Kuhn–Tucker optimality conditions are checked at the candidate point. If there is a
variable which fails to satisfy the optimality conditions, it is removed from the active
set. The algorithm repeats by solving a new quadratic problem over the updated
set of free variables. The software system LSSOL contains a numerically stable and
efficient implementation of the active set algorithm [5].

In [14], Moré and Toraldo propose a modification of the active set algorithm. The
modification consists of taking projected gradient steps starting from a point obtained
from solving the quadratic problem over the free variables as described above. This
way, the proposed algorithm is able to make bigger changes to the active set than the
original active set algorithm which makes a single change at a time. Unfortunately,
an implementation of this algorithm was not available for comparison.

Our algorithm makes significant changes to the active set at each iteration and
also when γ is reduced. In this regard, it is closer to the Moré–Toraldo algorithm
than the pure active set strategy.

In [6], Han, Pardalos, and Ye develop a primal-dual potential reduction algorithm
for bound constrained quadratic programming problems. The main computational
effort in their algorithm is the solution of a linear system of the form

(I +RTD−1R)p = g,

where R is an m×n matrix, D is a diagonal n×n positive definite matrix, and p and
g are m-vectors. As this algorithm was simple to program, we developed an efficient
implementation making extensive use of BLAS routines for comparison to QPASL1.
We refer to this code as HPY.

In [1], Coleman and Hulbert propose a superlinearly convergent Newton algorithm
for bound constrained quadratic programs with unit bounds. The main effort in this
algorithm is also the solution of a linear system

(|Y |+R1/2HR1/2)v = g,
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where Y is a diagonal matrix with nonzero entries, R is a nonsingular matrix, and
H is the matrix of the quadratic term in [BCQP]. Clearly, both linear systems have
a structure similar to (3.6). The algorithm by Coleman and Hulbert also uses a one-
dimensional search which is similar to that described in section 3.1.2. However, in the
algorithms of [6] and [1] a numerical refactorization needs to be performed at each
iteration, whereas we only perform a refactorization when it is cheaper or numerically
advisable to so. Hence, our average iteration is cheaper than any iteration of these
algorithms. An implementation of the Coleman–Hulbert algorithm is not available
for comparison. However, a close inspection of the results of [1] reveals that our
algorithm uses consistently much smaller numbers of iterations to solve test problems
with similar characteristics. To give an example, the Coleman–Hulbert algorithm
requires between 10.8 and 17.0 iterations (varying lcnd and ndeg) on the average for
m = 100, whereas our algorithm only requires between 3.8 and 9.6 for the same size
for a similar degree of accuracy.

4.3. Initialization. We tested both QPASL1 and LSSOL with different starting
points based on the recommendation of an anonymous referee. For LSSOL, we use
the following starting points: (1) we choose a starting point y0 as y0

j = 0 for all

j = 1, . . . ,m; (2) we compute ȳ = Q−1d and select the initial point as

yi =

 −1 if ȳi ≤ −1,
1 if ȳi ≥ +1,
ȳi otherwise.

For QPASL1 we also use two different starting points. The first starting point is
computed as follows. We fix a value of γ and use the following procedure, based on
treating the objective function as

1

2γ
rT (x)r(x) + bTx+

1

2
xTx+

1

2
bT b.

The necessary condition for a minimizer is

(AAT + γI)x = −γb.

We compute a solution x to the above linear system and use x0 = x. This is referred
to as the least squares starting point. The second starting point is inspired by the
second starting point used for LSSOL. We fix a value of γ and compute ȳ = Q−1d.
Then we set

si =

 −1 if ȳi ≤ −1,
1 if ȳi ≥ +1,
0 otherwise.

We compute x0 as the solution to the system

(AWAT + γI)x = −γ(As+ b),

where W is the diagonal matrix associated with s.

For HPY we use the initial point suggested in [6].
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4.4. Numerical results. In this section we report our numerical experience
with a Fortran 77 implementation of the new algorithm, which does not exploit spar-
sity. We have three goals when we perform numerical experiments. The first is to
examine the growth in solution time and iteration count of the new algorithm as
the problem size is increased. The second is to test the numerical accuracy of the
algorithm. The third is to estimate the relative standing of the algorithm vis-á-vis
other software systems. We compare our results to a library routine, E04NCF, from
the NAG subroutine library. E04NCF is based on LSSOL from the Stanford Systems
Optimization Library. We also offer comparisons with our own implementation of the
interior point algorithm of Han, Pardalos, and Ye [6].

Below we report the results of the following experiments:
1. The effect of near-degeneracy.
2. The effect of the condition number.
3. The effect of the number of variables at their bounds at the optimal solution.
4. The impact of the problem size.

We solve 10 problems of each size. The parameter nb is kept at the value m/2 unless
otherwise indicated. The tests were performed on a SPARC 4 Workstation running
Solaris with the -O switch of the F77 compiler. In all tables below, each line reports
the average over 10 problems of the following QPASL1 statistics: number of iterations,
run time in CPU seconds, number of refactorizations, and number of γ reductions.
The column “it” refers to the total number of iterations of the Newton method and
the total number of optimality checks during the execution of the algorithm. The
column “rf” refers to the total number of refactorizations in connection with the
computations of the factors L and D. The column “rd” refers to the total number
of times the optimality check was performed and/or γ was reduced. The heading
QPASL1(2) refers to the second starting point for QPASL1, whereas QPASL1(1)
refers to the least squares starting point. Similarly, LSSOL(2) indicates the second
initial point, while LSSOL(1) refers to the use of the origin as the initial point. The
columns under the heading LSSOL contain the run time statistics of LSSOL averaged
over 10 problems for each line. All runs with QPASL1, LSSOL, and HPY were
performed using default parameters, i.e., no fine tuning of the codes was done for any
test problem.

QPASL1 is stopped when the relative duality gap

(H(ŷ0)− F (x̂0))/(1 + F (x̂0))

is less than or equal to 10−8 and the primal feasibility measure ‖ŷ0‖∞ is less than or
equal to 1 + εy with εy = 10−5. The final accuracy obtained in QPASL1 is measured
using the accuracy in the objective function and the primal solution with respect to
the known optimal value and optimal solution vector. The accuracy in the optimal
value is checked using

q1 =
H(y0)−H(ŷ0)

H(y0)
,

where H(y0) is the known optimal value, and the accuracy in the solution is checked
using

q2 = ‖y0 − ŷ0‖2/‖y0‖2,
where y0 and ŷ0 denote the known and computed optimal values, respectively. In all
test problems solved in this study, we have

10−16 ≤ q1 ≤ 10−12.



CONTINUATION FOR QUADRATIC PROGRAMMING 79

Depending on the conditioning of the problem, we also obtain

10−12 ≤ q2 ≤ 10−9.

This indicates that we achieve high accuracy in the computed optimal solution. Re-
garding other parameters, we use γ0 = 10−3 as the starting value of γ, and β = 1/100.

LSSOL yields objective function values accurate to machine precision in all cases.
For HPY, the quantities q1 and q2 vary as follows:

10−9 ≤ q1 ≤ 10−8,

10−8 ≤ q2 ≤ 10−5.

4.4.1. Experiment 1: The effect of near-degeneracy. In Table 4.1 we
give computational results obtained when the near-degeneracy parameter ndeg is
increased.

We make the following observations.
• QPASL1 is competitive with LSSOL for small values (1,3) of the parameter
ndeg, whereas for larger values it loses its advantage. It is also substantially
faster than HPY.
• The iteration number of QPASL1 remains very small and almost constant

with the increasing problem size for small values of ndeg.
• The parameter ndeg has almost no effect on the performance of LSSOL.
• The two starting points for QPASL1 tend to perform similarly when near-

degeneracy is increased.
The reason for the deterioration in performance of QPASL1 for larger values of ndeg
is precisely related to Corollary 2.1. It is shown in this corollary that the value of

Table 4.1
Solution statistics of QPASL1 and LSSOL when near-degeneracy is increased.

m, lcnd, ndeg QPASL1(2) QPASL1(1)

it rf rd CPU it rf rd CPU
100, 1, 1 3.8 2 1 0.4 4.1 3 1 0.6
100, 1, 3 5.2 2.1 1.1 0.5 5.9 3.1 1.1 0.7
100, 1, 6 9.6 3.1 2.1 1.1 10.3 3.4 2.1 1.3
200, 1, 1 4.2 2 1 2.3 5.1 3 1 4.0
200, 1, 3 5.1 2.1 1.1 3.0 6 3.1 1.1 4.8
200, 1, 6 9.5 3.1 2.1 6.9 10.2 3.3 2.1 8.6
300, 1, 1 4 2 1 6.8 3.8 3 1 13.1
300, 1, 3 4.8 2.2 1.2 8.7 5.6 3.2 1.2 15.2
300, 1, 6 9.3 3.3 2.3 22.1 10.9 3.8 2.3 27.5

m, lcnd, ndeg LSSOL(2) LSSOL(1) HPY

it CPU it CPU it CPU
100, 1, 1 14.5 0.5 50 0.9 18 2.6
100, 1, 3 21.6 0.6 50 0.9 16.9 2.3
100, 1, 6 23.5 0.6 45.7 0.8 14.9 2.0
200, 1, 1 27.8 3.8 100.6 6.0 16 15.9
200, 1, 3 39.9 4.1 100.6 6.0 16.2 15.6
200, 1, 6 46.4 4.4 91.7 5.6 17.5 16.7
300, 1, 1 16 10.1 152.4 19.7 16.8 51.5
300, 1, 3 34.6 10.9 152.4 19.5 18.6 56.9
300, 1, 6 44.5 11.7 140.2 18.7 18.2 55.5
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Table 4.2
Solution statistics of QPASL1 and LSSOL when the condition number is increased.

m, lcnd, ndeg QPASL1(2) QPASL1(1)

it rf rd CPU it rf rd CPU
100, 4, 1 3.8 2 1 0.4 3.9 3.1 1 0.6
100, 8, 1 3.8 2 1 0.4 4.1 3.1 1 0.6
200, 4, 1 4 2 1 2.2 5.2 3 1 4.0
200, 8, 1 8.5 2.2 1 2.9 5.5 3 1 4.0
300, 4, 1 3.9 2 1 6.8 3.8 3 1 12.3
300, 8, 1 3.9 2 1 6.9 4.1 3 1 12.4

m, lcnd, ndeg LSSOL(2) LSSOL(1) HPY

it CPU it CPU it CPU
100, 4, 1 12.8 0.5 50 0.9 14.6 1.9
100, 8, 1 13.9 0.5 49.7 0.8 17.2 2.3
200, 4, 1 32.2 3.9 100.6 5.9 14.9 14.2
200, 8, 1 29.2 3.8 100.2 5.8 17.3 16.6
300, 4, 1 18 10.2 152.6 19.1 17.3 52.9
300, 8, 1 32.4 11.4 152.4 19.1 17 51.9

γ∗ is affected by the magnitude of nonzero residuals r(x0) at the optimal solution
x0. The smaller the residuals, the more γ should be reduced in order to reach the
optimal solution. This increases the number of reduction steps and the total number
of iterations, thereby causing a degradation in performance.

4.4.2. Experiment 2: The effect of the condition number. In Table 4.2
we summarize the average performance of the three codes when the conditioning
parameter lcond is increased.

It is observed that all three codes handle problems with increasing condition
number equally well.

4.4.3. Experiment 3: The effect of the number of variables at bounds.
The number of variables at a bound at an optimal solution can be controlled by
varying the parameter nb. We do so in this experiment and report the results in
Table 4.3.

We notice that the performance of LSSOL improves significantly when nb becomes
smaller than m/2 and worsens when it exceeds that value. This improvement is more
marked when the zero starting point is used. A similar improvement occurs with
HPY, whereas the opposite is true of QPASL1.

4.4.4. Experiment 4: The effect of the problem size. To illustrate the
effect of increasing problem size on the performance of the three codes, we provide
some results in Table 4.4.

We notice that LSSOL consumes about 1.5 times more CPU time than QPASL1
as we increase the problem size, while HPY uses approximately 10 times more CPU
compared to QPASL1.

5. Summary and concluding remarks. In this paper, we presented a dual
approach to strictly convex quadratic programming with unit bounds.

Our dual approach consisted of posing the problem [BCQP] as an unconstrained `1
minimization problem and approximating this nondifferentiable problem by a smooth
Huber problem. The minimizers of the smooth problem define a unique path that
converges to the primal-dual optimal solutions as a function of a scalar parameter
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Table 4.3
Solution statistics of QPASL1 and LSSOL when nb is varied.

m, lcnd, ndeg, nb QPASL1(2) QPASL1(1)

it rf rd CPU it rf rd CPU
100, 1, 1,m/2 3.8 2 1 0.4 4.1 3 1 0.6
100, 1, 1,m/10 3.7 2 1 0.5 4.2 2 1 0.5
100, 1, 1, 3m/4 5 3.1 1 0.4 3.5 3 1 0.5
200, 1, 1,m/2 4.2 2 1 2.3 5.1 3 1 4.0
200, 1, 1,m/10 4.1 2 1 3.6 6 4.6 2 4.0
200, 1, 1, 3m/4 8.1 3 1 2.8 4.5 3 1 3.1
300, 1, 1,m/2 4 2 1 6.8 3.8 3 1 13.1
300, 1, 1,m/10 3.9 2 1 11.4 4.2 2 1 12.7
300, 1, 1, 3m/4 9.3 3 1 8.8 3.9 3 1 10.0

m, lcnd, ndeg, nb LSSOL(2) LSSOL(1) HPY

it CPU it CPU it CPU
100, 1, 1,m/2 14.5 0.5 50 0.9 18 2.6
100, 1, 1,m/10 13 0.3 10.6 0.21 13.6 1.9
100, 1, 1, 3m/4 14.4 0.4 76.1 1.1 15.6 2.1
200, 1, 1,m/2 27.8 3.8 100.6 6.0 16 15.9
200, 1, 1,m/10 17.2 1.9 19.4 1.4 14.4 14.0
200, 1, 1, 3m/4 28.5 3.0 150.4 7.5 16 15.3
300, 1, 1,m/2 16 10.1 152.4 19.7 16.8 51.5
300, 1, 1,m/10 26.1 6.19 30 4.5 15.5 47.7
300, 1, 1, 3m/4 25.3 9.1 223.3 24.0 16 49.9

Table 4.4
Solution statistics of QPASL1 and LSSOL when the problem size is increased.

m, lcnd, ndeg QPASL1(2) QPASL1(1)

it rf rd CPU it rf rd CPU
100, 1, 1 3.8 2 1 0.4 4.1 3 1 0.6
200, 1, 1 4.2 2 1.0 2.3 5.1 3 1 4
300, 1, 1 4 2 1 6.8 3.8 3 1 13.1
400, 1, 1 4.2 2 1 16.0 4.9 3.1 1 29.7
500, 1, 1 4.3 2 1 30.4 5.3 3.1 1 58.7

m, lcnd, ndeg LSSOL(2) LSSOL(1) HPY

it CPU it CPU it CPU
100, 1, 1 14.5 0.5 50 0.9 18 2.6
200, 1, 1 27.8 3.8 100.6 6.0 16 15.9
300, 1, 1 16 10.1 152.4 19.7 16.8 51.5
400, 1, 1 30.8 25.4 203.7 45.1 18.8 139.4
500, 1, 1 40.8 48.1 253 85.9 20.2 288.4

γ. This suggested a continuation algorithm, where we follow this path to arrive at
primal-dual optimal solutions.

On the theoretical front, we established an extrapolation property of the solution
path and a constant sign property (for sufficiently small γ), which formed the pillar
of finite convergence of the continuation algorithm. We also gave a finite Newton
algorithm to solve the Huber problems.

On the practical front, we developed a stable and efficient implementation of
the algorithm for dense problems. We compared our results to an established soft-
ware system for quadratic programming, LSSOL, and to more recent algorithms for
[BCQP]. The following picture emerged from our experiments. The new algorithm is
competitive with a state-of-the-art implementation of active set methods for problems
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with low degree of near-degeneracy. It also handles problems with increasing condi-
tion number very well. It is also substantially faster than an interior point algorithm
proposed for [BCQP].

Finally we remark that the duality framework of section 2 can be easily extended
to problems where bounds are different from unity and/or where one of the bounds
is missing; see [2]. Nonunit bounds simply change the slope of the nondifferentiable
function arising in the dual problem. By way of illustration, consider the following
case:

min
y

H(y) = −dT y + 1
2y
TQy

subject to l ≤ y.

The nondifferentiable dual problem corresponding to the program above is

minimize F (x) ≡
m∑
i=1

ρi(ri(x)) +
1

2
xTx+ bTx+

1

2
bT b,

where

ρi(ri) =

{
liri if ri ≥ 0
∞ otherwise,

and the vectors r and b are defined as in section 2. The nondifferentiable function ρ
can be approximated by the following smooth Huber function

ψγ(ri) =

{
liri − 1

2γ if ri ≥ γ,
1

2γ r
2
i if ri < γ,

for some scalar parameter γ > 0. The properties and the algorithm derived in this
paper apply to the above approximation as well.
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